Gajanan A. Bodkhe, Mayur S. More, Mohamed Hashem, Hassan Fouad, Subramanian Siva, Megha A. Deshmukh, Nikesh N. Ingle, Myunghee Kim, Mahendra D. Shirsat
{"title":"Hg2+ Ions Sensor: Single Walled Carbon Nanotubes Incorporated Zn-Metal Organic Framework","authors":"Gajanan A. Bodkhe, Mayur S. More, Mohamed Hashem, Hassan Fouad, Subramanian Siva, Megha A. Deshmukh, Nikesh N. Ingle, Myunghee Kim, Mahendra D. Shirsat","doi":"10.1166/jno.2023.3494","DOIUrl":null,"url":null,"abstract":"In the present work, zinc benzene 1,4 dicarboxylate (ZnBDC) metal organic framework (MOF) and its composite with single-walled carbon nanotubes (SWNTs), we called as SWNTs@ZnBDC, has been synthesized by traditional solvothermal method. The synthesized materials have been evaluated with various techniques such as Fourier transform infrared spectroscopy, X-ray diffraction (XRD), thermogravimetric-differential thermal analysis, Brunauer–Emmett–Teller surface area analysis, cyclic voltammetry, and electrochemical impedance spectroscopy. The sensor has been fabricated by depositing SWNTs@ZnBDC MOF on a glassy carbon electrode (GCE). The SWNTs@ZnBDC/GCE electrode shows excellent sensing behaviour in terms of selectivity towards Hg2+ ions only at pH = 5 and does not show any sensing response towards Pb2+, Cr2+, Cd2+, Cu2+, and Ni2+ ions at a concentration of 1 μM. For the Hg2+ ions, the sensor shows a high sensitivity of 0.86 μA/nM with a limit of detection of 6.74 nM and a limit of quantification of 5 nM.","PeriodicalId":16446,"journal":{"name":"Journal of Nanoelectronics and Optoelectronics","volume":"55 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoelectronics and Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1166/jno.2023.3494","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In the present work, zinc benzene 1,4 dicarboxylate (ZnBDC) metal organic framework (MOF) and its composite with single-walled carbon nanotubes (SWNTs), we called as SWNTs@ZnBDC, has been synthesized by traditional solvothermal method. The synthesized materials have been evaluated with various techniques such as Fourier transform infrared spectroscopy, X-ray diffraction (XRD), thermogravimetric-differential thermal analysis, Brunauer–Emmett–Teller surface area analysis, cyclic voltammetry, and electrochemical impedance spectroscopy. The sensor has been fabricated by depositing SWNTs@ZnBDC MOF on a glassy carbon electrode (GCE). The SWNTs@ZnBDC/GCE electrode shows excellent sensing behaviour in terms of selectivity towards Hg2+ ions only at pH = 5 and does not show any sensing response towards Pb2+, Cr2+, Cd2+, Cu2+, and Ni2+ ions at a concentration of 1 μM. For the Hg2+ ions, the sensor shows a high sensitivity of 0.86 μA/nM with a limit of detection of 6.74 nM and a limit of quantification of 5 nM.