Complexity Analysis of an Interior-point Algorithm for CQP Based on a New Parametric Kernel Function

Randa Chalekh, E. A. Djeffal
{"title":"Complexity Analysis of an Interior-point Algorithm for CQP Based on a New Parametric Kernel Function","authors":"Randa Chalekh, E. A. Djeffal","doi":"10.19139/soic-2310-5070-1761","DOIUrl":null,"url":null,"abstract":"In this paper, we present a primal-dual interior-point algorithm for convex quadratic programming problem based on a new parametric kernel function with a hyperbolic-logarithmic barrier term. Using the proposed kernel function we show some basic properties that are essential to study the complexity analysis of the correspondent algorithm which we find coincides with the best know iteration bounds for the large-update method, namely, $O\\left(\\sqrt{n} \\log n \\log\\frac{n}{\\varepsilon}\\right)$ by a special choice of the parameter $p>1$.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"183 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a primal-dual interior-point algorithm for convex quadratic programming problem based on a new parametric kernel function with a hyperbolic-logarithmic barrier term. Using the proposed kernel function we show some basic properties that are essential to study the complexity analysis of the correspondent algorithm which we find coincides with the best know iteration bounds for the large-update method, namely, $O\left(\sqrt{n} \log n \log\frac{n}{\varepsilon}\right)$ by a special choice of the parameter $p>1$.
基于新参数核函数的 CQP 内部点算法的复杂性分析
在本文中,我们提出了一种基于带有双曲对数障碍项的新参数核函数的凸二次规划问题初等-二元内部点算法。通过对参数 $p>1$ 的特殊选择,我们发现该算法与已知大更新方法的最佳迭代边界相吻合,即 $O(\sqrt{n}\log n \log\frac{n}{\varepsilon}\right)$Oleft(\sqrt{n} \log n \log\frac{n}{\varepsilon}\right)$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信