Implementasi Deep Leraning Lenet Dengan Augmentasi Data Pada Identifikasi Anggrek

Fachrul Rizki, Muhammad Pajar Kharisma Putra, Maulana Aziz Assuja, Fenty Ariany
{"title":"Implementasi Deep Leraning Lenet Dengan Augmentasi Data Pada Identifikasi Anggrek","authors":"Fachrul Rizki, Muhammad Pajar Kharisma Putra, Maulana Aziz Assuja, Fenty Ariany","doi":"10.33365/jatika.v4i3.3652","DOIUrl":null,"url":null,"abstract":": Indonesia is a country with a high level of biodiversity, one of Indonesia's biodiversity with 5,000 species of orchids out of 25,000 species of orchids in the world. Orchids are part of natural life that we must care for and protect to maintain its sustainability. This orchid has a very interesting color and shape and is different for each type of orchid. The diversity of these orchids is quite difficult to recognize if you only look at the colors and shapes. This research utilizes deep learning technology, which is an artificial neural network model that has been widely used and developed in digital image recognition. Deep learning can be used as a technology to solve the problem of identifying orchid species. This research aims to see the accuracy value of deep learning model training on LeNet architecture using augmentation techniques on orchid identification. The dataset used is 1600 images and then augmentation is carried out on the dataset so that the data becomes 3200 images. The tools used in the data training process are Google Colab. The results of the study show that the accuracy value on LeNet using rotate augmentation reaches an accuracy rate of 81.88%.","PeriodicalId":33961,"journal":{"name":"Jurnal Informatika dan Rekayasa Perangkat Lunak","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika dan Rekayasa Perangkat Lunak","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33365/jatika.v4i3.3652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: Indonesia is a country with a high level of biodiversity, one of Indonesia's biodiversity with 5,000 species of orchids out of 25,000 species of orchids in the world. Orchids are part of natural life that we must care for and protect to maintain its sustainability. This orchid has a very interesting color and shape and is different for each type of orchid. The diversity of these orchids is quite difficult to recognize if you only look at the colors and shapes. This research utilizes deep learning technology, which is an artificial neural network model that has been widely used and developed in digital image recognition. Deep learning can be used as a technology to solve the problem of identifying orchid species. This research aims to see the accuracy value of deep learning model training on LeNet architecture using augmentation techniques on orchid identification. The dataset used is 1600 images and then augmentation is carried out on the dataset so that the data becomes 3200 images. The tools used in the data training process are Google Colab. The results of the study show that the accuracy value on LeNet using rotate augmentation reaches an accuracy rate of 81.88%.
在兰花鉴定中利用数据增强实现深度词义分析 Lenet
:印度尼西亚是一个拥有高度生物多样性的国家,在全世界 25,000 种兰花中,印度尼西亚拥有 5,000 种兰花。兰花是自然生命的一部分,我们必须爱护和保护,以保持其可持续性。这种兰花的颜色和形状非常有趣,而且每种兰花都不一样。如果只看颜色和形状,很难识别这些兰花的多样性。这项研究利用了深度学习技术,这是一种人工神经网络模型,在数字图像识别领域得到了广泛的应用和发展。深度学习可以作为解决兰花品种识别问题的一种技术。本研究旨在了解在 LeNet 架构上使用增强技术训练的深度学习模型在兰花识别上的准确度值。使用的数据集为 1600 张图像,然后对数据集进行扩增,使数据变为 3200 张图像。数据训练过程中使用的工具是 Google Colab。研究结果表明,使用旋转增强技术的 LeNet 的准确率达到 81.88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信