Comparison of Regression Analysis with Machine Learning Supervised Predictive Model Techniques

P. Sihombing, Sigit Budiantono, A. M. Arsani, Triana Mauliasih Aritonang, Mohamad Arif Kurniawan
{"title":"Comparison of Regression Analysis with Machine Learning Supervised Predictive Model Techniques","authors":"P. Sihombing, Sigit Budiantono, A. M. Arsani, Triana Mauliasih Aritonang, Mohamad Arif Kurniawan","doi":"10.11594/jesi.03.02.03","DOIUrl":null,"url":null,"abstract":"The happiness index is a parameter used to measure the level of happiness and well-being of people in a particular country or region. This research aims to determine the factors that contribute to people's happiness. In terms of modelling, this study will compare several regressions modelling using machine learning, including regression trees, random forests and Support Vector Regression (SVR). The SVR model has a minor error value in terms of MSE, RMSE and MAE compared to the other three models. The same thing happened when viewed from the value of R2 that the SVR model has an enormous value. This result indicates that SVR modelling is the best of the four models. A comprehensive policy is needed to increase a country's happiness index.","PeriodicalId":136508,"journal":{"name":"Jurnal Ekonomi Dan Statistik Indonesia","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ekonomi Dan Statistik Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11594/jesi.03.02.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The happiness index is a parameter used to measure the level of happiness and well-being of people in a particular country or region. This research aims to determine the factors that contribute to people's happiness. In terms of modelling, this study will compare several regressions modelling using machine learning, including regression trees, random forests and Support Vector Regression (SVR). The SVR model has a minor error value in terms of MSE, RMSE and MAE compared to the other three models. The same thing happened when viewed from the value of R2 that the SVR model has an enormous value. This result indicates that SVR modelling is the best of the four models. A comprehensive policy is needed to increase a country's happiness index.
回归分析与机器学习监督预测模型技术的比较
幸福指数是一个参数,用于衡量特定国家或地区人民的幸福和福祉水平。本研究旨在确定影响人们幸福感的因素。在建模方面,本研究将比较几种使用机器学习的回归建模,包括回归树、随机森林和支持向量回归(SVR)。与其他三种模型相比,SVR 模型在 MSE、RMSE 和 MAE 方面的误差值较小。同样,从 R2 值来看,SVR 模型的 R2 值也很大。这一结果表明,SVR 模型是四个模型中最好的。要提高一个国家的幸福指数,需要制定全面的政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信