Studi Komparasi Algoritma SVM Dan Random Forest Pada Analisis Sentimen Komentar Youtube BTS

Anisa Nur Syafia, M. Hidayattullah, Wirmanto Suteddy
{"title":"Studi Komparasi Algoritma SVM Dan Random Forest Pada Analisis Sentimen Komentar Youtube BTS","authors":"Anisa Nur Syafia, M. Hidayattullah, Wirmanto Suteddy","doi":"10.30591/jpit.v8i3.5064","DOIUrl":null,"url":null,"abstract":"Sentiment analysis of YouTube boy group BTS comments uses the NLP approach to detect emotional patterns based on two category labels, namely positive and negative. With NLP, positive or negative polarity in an entity can be allocated as well as predicted high and low performance from various classification sentiments. The machine learning algorithms used to measure the accuracy of sentiment analysis developed are the Support Vector Machine and Random Forest algorithms. The steps taken start from the data collection obtained from the BTS YouTube Comment dataset and then go through the data preprocessing stage. Then proceed to the feature extraction stage by converting text into digital vectors or Bag of Words (BOW) and classified using machine learning algorithms until the evaluation stage. From the results comparison of the evaluated algorithms, the accuracy value between the two algorithms is 96% for training data and 85% for data testing using the SVM algorithm, while for the Random Forest algorithm it is 82% for training data and 80% for data testing. This shows that the SVM algorithm produces a higher accuracy value than the Random Forest for sentiment analysis of YouTube boy group BTS comments.","PeriodicalId":503683,"journal":{"name":"Jurnal Informatika: Jurnal Pengembangan IT","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika: Jurnal Pengembangan IT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30591/jpit.v8i3.5064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sentiment analysis of YouTube boy group BTS comments uses the NLP approach to detect emotional patterns based on two category labels, namely positive and negative. With NLP, positive or negative polarity in an entity can be allocated as well as predicted high and low performance from various classification sentiments. The machine learning algorithms used to measure the accuracy of sentiment analysis developed are the Support Vector Machine and Random Forest algorithms. The steps taken start from the data collection obtained from the BTS YouTube Comment dataset and then go through the data preprocessing stage. Then proceed to the feature extraction stage by converting text into digital vectors or Bag of Words (BOW) and classified using machine learning algorithms until the evaluation stage. From the results comparison of the evaluated algorithms, the accuracy value between the two algorithms is 96% for training data and 85% for data testing using the SVM algorithm, while for the Random Forest algorithm it is 82% for training data and 80% for data testing. This shows that the SVM algorithm produces a higher accuracy value than the Random Forest for sentiment analysis of YouTube boy group BTS comments.
SVM 算法和随机森林算法在 BTS Youtube 评论情感分析中的比较研究
YouTube 男团 BTS 评论的情感分析采用 NLP 方法,根据两个类别标签(即积极和消极)检测情感模式。通过 NLP,可以分配实体中的积极或消极极性,并预测各种分类情感的高低表现。用于衡量情感分析准确性的机器学习算法是支持向量机算法和随机森林算法。所采取的步骤是从 BTS YouTube 评论数据集收集数据开始,然后经过数据预处理阶段。然后进入特征提取阶段,将文本转换为数字向量或词袋(BOW),并使用机器学习算法进行分类,直至评估阶段。从评估算法的结果对比来看,使用 SVM 算法,两种算法的准确率分别为:训练数据 96%,测试数据 85%;而使用随机森林算法,两种算法的准确率分别为:训练数据 82%,测试数据 80%。这表明,在对 YouTube 男团 BTS 的评论进行情感分析时,SVM 算法的准确率高于随机森林算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信