Phase transitions in the anisotropic XY ferromagnet with quenched nonmagnetic impurity

IF 1.5 4区 物理与天体物理 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Olivia Mallick, M. Acharyya
{"title":"Phase transitions in the anisotropic XY ferromagnet with quenched nonmagnetic impurity","authors":"Olivia Mallick, M. Acharyya","doi":"10.1142/s0129183124500979","DOIUrl":null,"url":null,"abstract":"The three dimensional anisotropic XY ferromagnet has been studied by Monte Carlo simulation. The ferro-para phase transition has been observed to take place at a lower temperature for impure anisotropic XY ferromagnet. The pseudocritical temperature ($T_c^*$) has been found to decrease as the system gets more and more impure (impurity concentration $p$ increases). In the case of bilinear exchange type of anisotropy ($\\lambda$), the pseudocritical temperature ($T_c^*$) increases linearly with $\\lambda$ for any given concentration of nonmagnetic impurity ($p$). The slope of this linear function has been found to depend on the impurity concentration ($p$). The slope decreases linearly with the impurity concentration ($p$). In the case of the single site anisotropy ($D$), the pseudocritical temperature ($T_c^*$) has been found to decrease linearly with $p$ for fixed $D$. The critical temperature (for a fixed set of parameter values) has been estimated from the temperature variation of fourth order Binder cumulants ($U_L$) for different system sizes ($L$). The critical magnetisation ($M(T_c)$) and the maximum value of the susceptibility ($\\chi_p$) are calculated for different system sizes ($L$). The critical exponents for the assumed scaling laws, $M(T_c) \\sim L^{-{{\\beta} \\over {\\nu}}}$ and $\\chi_p \\sim L^{{{\\gamma} \\over {\\nu}}}$, are estimated through the finite size analysis. We have estimated, ${{\\beta} \\over {\\nu}}$, equals to $0.48\\pm0.05$ and $0.37\\pm0.04$ for bilinear exchange and single site anisotropy respectively. We have also estimated, ${{\\gamma} \\over {\\nu}}$ equals to $1.78\\pm0.05$ and $1.81\\pm0.05$ for bilinear exchange and single site anisotropy respectively.","PeriodicalId":50308,"journal":{"name":"International Journal of Modern Physics C","volume":"22 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0129183124500979","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The three dimensional anisotropic XY ferromagnet has been studied by Monte Carlo simulation. The ferro-para phase transition has been observed to take place at a lower temperature for impure anisotropic XY ferromagnet. The pseudocritical temperature ($T_c^*$) has been found to decrease as the system gets more and more impure (impurity concentration $p$ increases). In the case of bilinear exchange type of anisotropy ($\lambda$), the pseudocritical temperature ($T_c^*$) increases linearly with $\lambda$ for any given concentration of nonmagnetic impurity ($p$). The slope of this linear function has been found to depend on the impurity concentration ($p$). The slope decreases linearly with the impurity concentration ($p$). In the case of the single site anisotropy ($D$), the pseudocritical temperature ($T_c^*$) has been found to decrease linearly with $p$ for fixed $D$. The critical temperature (for a fixed set of parameter values) has been estimated from the temperature variation of fourth order Binder cumulants ($U_L$) for different system sizes ($L$). The critical magnetisation ($M(T_c)$) and the maximum value of the susceptibility ($\chi_p$) are calculated for different system sizes ($L$). The critical exponents for the assumed scaling laws, $M(T_c) \sim L^{-{{\beta} \over {\nu}}}$ and $\chi_p \sim L^{{{\gamma} \over {\nu}}}$, are estimated through the finite size analysis. We have estimated, ${{\beta} \over {\nu}}$, equals to $0.48\pm0.05$ and $0.37\pm0.04$ for bilinear exchange and single site anisotropy respectively. We have also estimated, ${{\gamma} \over {\nu}}$ equals to $1.78\pm0.05$ and $1.81\pm0.05$ for bilinear exchange and single site anisotropy respectively.
带有淬火非磁性杂质的各向异性 XY 铁磁体中的相变
通过蒙特卡罗模拟研究了三维各向异性 XY 铁磁体。对于不纯的各向异性 XY 铁磁体,铁-para 相变发生在较低的温度下。假临界温度($T_c^*$)随着系统越来越不纯(杂质浓度 $p$ 增加)而降低。在双线性交换型各向异性($\lambda$)的情况下,对于任何给定浓度的非磁性杂质($p$),伪临界温度($T_c^*$)与$\lambda$呈线性增长。该线性函数的斜率取决于杂质浓度($p$)。斜率随杂质浓度($p$)的增加而线性减小。在单点各向异性($D$)的情况下,在固定的$D$条件下,伪临界温度($T_c^*$)随$p$线性下降。临界温度(针对一组固定参数值)是根据不同系统大小($L$)的四阶宾德累积量($U_L$)的温度变化估算出来的。临界磁化率($M(T_c)$)和磁感应强度最大值($\chi_p$)是根据不同的系统尺寸($L$)计算得出的。通过有限尺寸分析,我们估算出了假定缩放定律的临界指数:$M(T_c) \sim L^{-{{\beta} \over {\nu}}$ 和 $\chi_p \sim L^{{{\gamma} \over {\nu}}$ 。我们估计,对于双线性交换和单点各向异性,${{mega} \over {\nu}}$ 分别等于 0.48 和 0.04 美元。我们还估计,${{gamma} \over {\nu}}$ 分别等于 1.78 (pm0.05)$ 和 1.81 (pm0.05)$,用于双线性交换和单点各向异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Modern Physics C
International Journal of Modern Physics C 物理-计算机:跨学科应用
CiteScore
3.00
自引率
15.80%
发文量
158
审稿时长
4 months
期刊介绍: International Journal of Modern Physics C (IJMPC) is a journal dedicated to Computational Physics and aims at publishing both review and research articles on the use of computers to advance knowledge in physical sciences and the use of physical analogies in computation. Topics covered include: algorithms; computational biophysics; computational fluid dynamics; statistical physics; complex systems; computer and information science; condensed matter physics, materials science; socio- and econophysics; data analysis and computation in experimental physics; environmental physics; traffic modelling; physical computation including neural nets, cellular automata and genetic algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信