MAX-STABLE PROCESS WITH GEOMETRIC GAUSSIAN MODEL ON RAINFALL DATA IN SEMARANG CITY

Arief Rachman Hakim, R. Santoso, H. Yasin, Masithoh Yessi Rochayani
{"title":"MAX-STABLE PROCESS WITH GEOMETRIC GAUSSIAN MODEL ON RAINFALL DATA IN SEMARANG CITY","authors":"Arief Rachman Hakim, R. Santoso, H. Yasin, Masithoh Yessi Rochayani","doi":"10.14710/medstat.16.1.59-66","DOIUrl":null,"url":null,"abstract":"Spatial extreme value (SEV) is a statistical technique for modeling extreme events at multiple locations with spatial dependencies between locations. High intensity rainfall can cause disasters such as floods and landslides. Rainfall modelling is needed as an early detection step. SEV was developed from the univariate Extreme Value Theory (EVT) method to become multivariate. This work uses the SEV approach, namely the Max-stable process, which is an extension of the multivariate EVT into infinite dimensions. There are 4 Max-stable process models, namely Smith, Schlater, Brown Resnik, and Geometric Gaussian, which have the Generalized Extreme Value (GEV) distribution. This study models extreme rainfall, using rainfall data in the city of Semarang. This research was carried out by modeling data using the Geometric Gaussian model. This method is developed from the Smith and Schlater model, so this model can get better modeling results than the previous model. The maximum extreme rainfall prediction results for the next two periods are Semarang climatology station 129.30 mm3, Ahmad Yani 121.40 mm3, and Tanjung Mas 111.00 mm3. The result from this study can be used as an alternative for the government for early detection of the possibility of extreme rainfall.","PeriodicalId":34146,"journal":{"name":"Media Statistika","volume":"71 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Media Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/medstat.16.1.59-66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial extreme value (SEV) is a statistical technique for modeling extreme events at multiple locations with spatial dependencies between locations. High intensity rainfall can cause disasters such as floods and landslides. Rainfall modelling is needed as an early detection step. SEV was developed from the univariate Extreme Value Theory (EVT) method to become multivariate. This work uses the SEV approach, namely the Max-stable process, which is an extension of the multivariate EVT into infinite dimensions. There are 4 Max-stable process models, namely Smith, Schlater, Brown Resnik, and Geometric Gaussian, which have the Generalized Extreme Value (GEV) distribution. This study models extreme rainfall, using rainfall data in the city of Semarang. This research was carried out by modeling data using the Geometric Gaussian model. This method is developed from the Smith and Schlater model, so this model can get better modeling results than the previous model. The maximum extreme rainfall prediction results for the next two periods are Semarang climatology station 129.30 mm3, Ahmad Yani 121.40 mm3, and Tanjung Mas 111.00 mm3. The result from this study can be used as an alternative for the government for early detection of the possibility of extreme rainfall.
采用几何高斯模型的最大稳定过程与塞玛琅市的降雨量数据
空间极值(SEV)是一种统计技术,用于模拟多个地点发生的极端事件,这些地点之间存在空间依赖关系。高强度降雨可引发洪水和山体滑坡等灾害。需要建立降雨模型作为早期检测步骤。SEV 由单变量极值理论 (EVT) 方法发展成为多变量方法。本研究采用的 SEV 方法,即最大稳定过程,是多元 EVT 向无限维度的扩展。有 4 种最大稳定过程模型,即 Smith、Schlater、Brown Resnik 和几何高斯模型,它们都具有广义极值(GEV)分布。本研究利用三宝垄市的降雨数据建立极端降雨模型。本研究使用几何高斯模型对数据进行建模。该方法是从 Smith 和 Schlater 模型发展而来的,因此与之前的模型相比,该模型能获得更好的建模效果。未来两个时期的最大极端降雨量预测结果分别为三宝垄气候站 129.30 mm3、艾哈迈德-亚尼 121.40 mm3 和丹戎马斯 111.00 mm3。这项研究的结果可作为政府及早发现极端降雨可能性的备选方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信