{"title":"Non-equilibrium steady states of electrolyte interfaces","authors":"M. Bier","doi":"10.1088/1367-2630/ad19a9","DOIUrl":null,"url":null,"abstract":"The non-equilibrium steady states of a semi-infinite quasi-one-dimensional univalent binary electrolyte solution, characterised by non-vanishing electric currents, are investigated by means of Poisson-Nernst-Planck (PNP) theory. Exact analytical expressions of the electric field, the charge density and the number density are derived, which depend on the electric current density as a parameter. From a non-equilibrium version of the Grahame equation, which relates the total space charge per cross-sectional area and the corresponding contribution of the electric potential drop, the current-dependent differential capacitance of the diffuse layer is derived. In the limit of vanishing electric current these results reduce to those within Gouy-Chapman theory. It is shown that improperly chosen boundary conditions lead to non-equilibrium steady state solutions of the PNP equations with negative ion number densities. A necessary and sufficient criterion on surface conductivity constitutive relations is formulated which allows one to detect such unphysical solutions.","PeriodicalId":508829,"journal":{"name":"New Journal of Physics","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad19a9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The non-equilibrium steady states of a semi-infinite quasi-one-dimensional univalent binary electrolyte solution, characterised by non-vanishing electric currents, are investigated by means of Poisson-Nernst-Planck (PNP) theory. Exact analytical expressions of the electric field, the charge density and the number density are derived, which depend on the electric current density as a parameter. From a non-equilibrium version of the Grahame equation, which relates the total space charge per cross-sectional area and the corresponding contribution of the electric potential drop, the current-dependent differential capacitance of the diffuse layer is derived. In the limit of vanishing electric current these results reduce to those within Gouy-Chapman theory. It is shown that improperly chosen boundary conditions lead to non-equilibrium steady state solutions of the PNP equations with negative ion number densities. A necessary and sufficient criterion on surface conductivity constitutive relations is formulated which allows one to detect such unphysical solutions.