APPROACHES OF BUILDING A REAL-WORLD OBJECT DETECTOR DATA SOURCE

Olga Pavlova, Andriy Bashta, Andrii Kuzmin
{"title":"APPROACHES OF BUILDING A REAL-WORLD OBJECT DETECTOR DATA SOURCE","authors":"Olga Pavlova, Andriy Bashta, Andrii Kuzmin","doi":"10.31891/csit-2023-3-3","DOIUrl":null,"url":null,"abstract":"Object detection is a crucial task in computer vision and AI applications, enabling machines to identify and locate objects within images or video frames. The accuracy and performance of an object detector heavily rely on the quality and diversity of the training data. Several structured approaches of building an object detector data source have been build, drawing inspiration from Apple's Create ML documentation on the topic. Additionally, real-world applications available on both the App Store and Google Play that leverage object detection technology are showcased.","PeriodicalId":353631,"journal":{"name":"Computer systems and information technologies","volume":"63 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer systems and information technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31891/csit-2023-3-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Object detection is a crucial task in computer vision and AI applications, enabling machines to identify and locate objects within images or video frames. The accuracy and performance of an object detector heavily rely on the quality and diversity of the training data. Several structured approaches of building an object detector data source have been build, drawing inspiration from Apple's Create ML documentation on the topic. Additionally, real-world applications available on both the App Store and Google Play that leverage object detection technology are showcased.
建立真实世界物体检测器数据源的方法
物体检测是计算机视觉和人工智能应用中的一项重要任务,它能让机器识别和定位图像或视频帧中的物体。物体检测器的准确性和性能在很大程度上取决于训练数据的质量和多样性。我们从苹果公司有关该主题的 Create ML 文档中汲取灵感,构建了几种构建物体检测器数据源的结构化方法。此外,还展示了 App Store 和 Google Play 上利用物体检测技术的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信