{"title":"DEVELOPMENT, RESEARCH AND PILOT INDUSTRIAL DEVELOPMENT OF CARBON BLACK AGGLOMIRATION TECHNOLOGY","authors":"R. Shamgulov","doi":"10.34031/2071-7318-2023-8-12-124-137","DOIUrl":null,"url":null,"abstract":"The article examines the issues of agglomeration of polydisperse technogenic materials with low bulk density, in particular carbon black (CB). Patent-protected technical solutions and technology for processing organic solid technogenic materials obtained by processing MSW by low-temperature thermolysis (T≤500 C) are presented. Distinctive features of the developed technical means are: sealing loading and unloading units without access to air oxygen, geometric profile and configuration of internal working parts, a system for aspiration and condensation of a vapor-gas mixture, etc. A patent-protected design of a drum-screw unit for agglomeration of technical specifications of low-temperature thermolysis technology has been presented. Specification studies have been carried out, obtained by processing organic solid municipal waste using low-temperature thermolysis. A mechano-rheological model of the agglomeration process of the material under study has been developed. Theoretical studies of the mechano-rheological model of stage-by-stage agglomeration of polydisperse materials have been carried out. The fundamental principles of organizing technological processes of granule formation at each stage of material processing and granulate classification have been established. The necessity of using elements (Hooke, Newton, Saint-Venant, etc.) and mechano-rheological models of volumetric-spatial orientation of CB particles and agglomerated granulate constructed on their basis at various stages is substantiated. The combination of elements used in the models of Maxwell, Bingman, Shvedov, etc., at each stage of the agglomeration process is theoretically justified. On the basis of theoretical studies and modeling of stage-by-stage agglomeration processes, special devices have been developed, implemented in the patent-protected design of a combined-action drum-screw unit (DSU CA). Design documentation has been developed and a pilot industrial sample of BVA CD has been manufactured for agglomeration of technogenic polydisperse materials","PeriodicalId":9367,"journal":{"name":"Bulletin of Belgorod State Technological University named after. V. G. Shukhov","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Belgorod State Technological University named after. V. G. Shukhov","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34031/2071-7318-2023-8-12-124-137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The article examines the issues of agglomeration of polydisperse technogenic materials with low bulk density, in particular carbon black (CB). Patent-protected technical solutions and technology for processing organic solid technogenic materials obtained by processing MSW by low-temperature thermolysis (T≤500 C) are presented. Distinctive features of the developed technical means are: sealing loading and unloading units without access to air oxygen, geometric profile and configuration of internal working parts, a system for aspiration and condensation of a vapor-gas mixture, etc. A patent-protected design of a drum-screw unit for agglomeration of technical specifications of low-temperature thermolysis technology has been presented. Specification studies have been carried out, obtained by processing organic solid municipal waste using low-temperature thermolysis. A mechano-rheological model of the agglomeration process of the material under study has been developed. Theoretical studies of the mechano-rheological model of stage-by-stage agglomeration of polydisperse materials have been carried out. The fundamental principles of organizing technological processes of granule formation at each stage of material processing and granulate classification have been established. The necessity of using elements (Hooke, Newton, Saint-Venant, etc.) and mechano-rheological models of volumetric-spatial orientation of CB particles and agglomerated granulate constructed on their basis at various stages is substantiated. The combination of elements used in the models of Maxwell, Bingman, Shvedov, etc., at each stage of the agglomeration process is theoretically justified. On the basis of theoretical studies and modeling of stage-by-stage agglomeration processes, special devices have been developed, implemented in the patent-protected design of a combined-action drum-screw unit (DSU CA). Design documentation has been developed and a pilot industrial sample of BVA CD has been manufactured for agglomeration of technogenic polydisperse materials