Optimal logistics scheduling with dynamic information in emergency response: Case studies for humanitarian objectives

J. Cao, H. Han, Y.J. Wang, T.C. Han
{"title":"Optimal logistics scheduling with dynamic information in emergency response: Case studies for humanitarian objectives","authors":"J. Cao, H. Han, Y.J. Wang, T.C. Han","doi":"10.14743/apem2023.3.480","DOIUrl":null,"url":null,"abstract":"The mathematical model of infectious disease is a typical problem in mathematical modeling, and the common infectious disease models include the susceptible-infected (SI) model, the susceptible-infected-recovered model (SIR), the susceptible-infected-recovered-susceptible model (SIRS) and the susceptible-exposed-infected-recovered (SEIR) model. These models can be used to predict the impact of regional return to work after the epidemic. In this paper, we use the SEIR model to solve the dynamic medicine demand information in humanitarian relief phase. A multistage mixed integer programming model for the humanitarian logistics and transport resource is proposed. The objective functions of the model include delay cost and minimum running time in the time-space network. The model describes that how to distribute and deliver medicine resources from supply locations to demand locations with an efficient and lower-cost way through a transportation network. The linear programming problem is solved by the proposed Benders decomposition algorithm. Finally, we use two cases to calculate model and algorithm. The results of the case prove the validity of the model and algorithm.","PeriodicalId":445710,"journal":{"name":"Advances in Production Engineering & Management","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Production Engineering & Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14743/apem2023.3.480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The mathematical model of infectious disease is a typical problem in mathematical modeling, and the common infectious disease models include the susceptible-infected (SI) model, the susceptible-infected-recovered model (SIR), the susceptible-infected-recovered-susceptible model (SIRS) and the susceptible-exposed-infected-recovered (SEIR) model. These models can be used to predict the impact of regional return to work after the epidemic. In this paper, we use the SEIR model to solve the dynamic medicine demand information in humanitarian relief phase. A multistage mixed integer programming model for the humanitarian logistics and transport resource is proposed. The objective functions of the model include delay cost and minimum running time in the time-space network. The model describes that how to distribute and deliver medicine resources from supply locations to demand locations with an efficient and lower-cost way through a transportation network. The linear programming problem is solved by the proposed Benders decomposition algorithm. Finally, we use two cases to calculate model and algorithm. The results of the case prove the validity of the model and algorithm.
应急响应中的动态信息优化物流调度:人道主义目标案例研究
传染病数学模型是数学建模中的典型问题,常见的传染病模型包括易感-感染模型(SI)、易感-感染-恢复模型(SIR)、易感-感染-恢复-易感模型(SIRS)和易感-暴露-感染-恢复模型(SEIR)。这些模型可用于预测疫情过后地区重返工作岗位的影响。本文使用 SEIR 模型来解决人道主义救援阶段的动态药品需求信息。本文提出了人道主义物流运输资源的多阶段混合整数编程模型。该模型的目标函数包括时空网络中的延迟成本和最短运行时间。该模型描述了如何通过运输网络以高效、低成本的方式将医药资源从供应地点分配并运送到需求地点。该线性规划问题通过提出的 Benders 分解算法求解。最后,我们用两个案例来计算模型和算法。案例结果证明了模型和算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信