Marginalized myopic deconvolution of adaptive optics corrected images using Markov chain Monte Carlo methods

Alix Yan, Laurent M. Mugnier, J. Giovannelli, Romain Fétick, Cyril Petit
{"title":"Marginalized myopic deconvolution of adaptive optics corrected images using Markov chain Monte Carlo methods","authors":"Alix Yan, Laurent M. Mugnier, J. Giovannelli, Romain Fétick, Cyril Petit","doi":"10.1117/1.JATIS.9.4.048004","DOIUrl":null,"url":null,"abstract":"Abstract. Adaptive optics (AO) corrected image restoration is particularly difficult, as it suffers from the lack of knowledge on the point spread function (PSF) in addition to usual difficulties. An efficient approach is to marginalize the object out of the problem and to estimate the PSF and (object and noise) hyperparameters only, before deconvolving the image using these estimates. Recent works have applied this marginal myopic deconvolution method, based on the maximum a posteriori estimator, combined with a parametric model of the PSF, to a series of AO-corrected astronomical and satellite images. However, this method does not enable one to infer global uncertainties on the parameters. We propose a PSF estimation method, which consists in choosing the minimum mean square error estimator and computing the latter as well as the associated uncertainties thanks to a Markov chain Monte Carlo algorithm. We validate our method by means of realistic simulations, in both astronomical and satellite observation contexts. Finally, we present results on experimental images for both applications: an astronomical observation on Very Large Telescope/spectro-polarimetric high-contrast exoplanet research with the Zimpol instrument and a ground-based LEO satellite observation at Côte d’Azur Observatory’s 1.52 m telescope with Office National d'Etudes et de Recherches Aérospatiales’s ODISSEE AO bench.","PeriodicalId":508807,"journal":{"name":"Journal of Astronomical Telescopes, Instruments, and Systems","volume":"8 1","pages":"048004 - 048004"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes, Instruments, and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.JATIS.9.4.048004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Adaptive optics (AO) corrected image restoration is particularly difficult, as it suffers from the lack of knowledge on the point spread function (PSF) in addition to usual difficulties. An efficient approach is to marginalize the object out of the problem and to estimate the PSF and (object and noise) hyperparameters only, before deconvolving the image using these estimates. Recent works have applied this marginal myopic deconvolution method, based on the maximum a posteriori estimator, combined with a parametric model of the PSF, to a series of AO-corrected astronomical and satellite images. However, this method does not enable one to infer global uncertainties on the parameters. We propose a PSF estimation method, which consists in choosing the minimum mean square error estimator and computing the latter as well as the associated uncertainties thanks to a Markov chain Monte Carlo algorithm. We validate our method by means of realistic simulations, in both astronomical and satellite observation contexts. Finally, we present results on experimental images for both applications: an astronomical observation on Very Large Telescope/spectro-polarimetric high-contrast exoplanet research with the Zimpol instrument and a ground-based LEO satellite observation at Côte d’Azur Observatory’s 1.52 m telescope with Office National d'Etudes et de Recherches Aérospatiales’s ODISSEE AO bench.
利用马尔可夫链蒙特卡洛方法对自适应光学校正图像进行边际近视解卷积
摘要自适应光学(AO)校正图像复原特别困难,因为除了通常的困难之外,它还受到缺乏点扩散函数(PSF)知识的影响。一种有效的方法是将问题中的物体边缘化,只估计 PSF 和(物体和噪声)超参数,然后再利用这些估计值对图像进行解卷积。最近的研究将这种基于最大后验估计法的边际近视解卷积方法与 PSF 参数模型相结合,应用于一系列经过 AO 校正的天文和卫星图像。然而,这种方法无法推断参数的全局不确定性。我们提出了一种 PSF 估算方法,包括选择最小均方误差估算器,并通过马尔科夫链蒙特卡罗算法计算后者以及相关的不确定性。我们通过在天文和卫星观测背景下的实际模拟来验证我们的方法。最后,我们介绍了这两种应用的实验图像结果:利用 Zimpol 仪器在甚大望远镜上进行的天文观测/高对比度系外行星研究;利用国家航空航天研究办公室的 ODISSEE AO 工作台在蔚蓝海岸天文台的 1.52 米望远镜上进行的地基低地球轨道卫星观测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信