Machine-learning approach for optimal self-calibration and fringe tracking in photonic nulling interferometry

B. Norris, M. Martinod, P. Tuthill, Simon Gross, N. Cvetojevic, Nemanja Jovanovic, T. Lagadec, Teresa Klinner-Teo, O. Guyon, J. Lozi, V. Deo, S. Vievard, Alex Arriola, T. Gretzinger, Jon Lawrence, M. Withford
{"title":"Machine-learning approach for optimal self-calibration and fringe tracking in photonic nulling interferometry","authors":"B. Norris, M. Martinod, P. Tuthill, Simon Gross, N. Cvetojevic, Nemanja Jovanovic, T. Lagadec, Teresa Klinner-Teo, O. Guyon, J. Lozi, V. Deo, S. Vievard, Alex Arriola, T. Gretzinger, Jon Lawrence, M. Withford","doi":"10.1117/1.JATIS.9.4.048005","DOIUrl":null,"url":null,"abstract":"Abstract. Photonic technologies have enabled a generation of nulling interferometers, such as the guided light interferometric nulling technology instrument, potentially capable of imaging exoplanets and circumstellar structure at extreme contrast ratios by suppressing contaminating starlight, and paving the way to the characterization of habitable planet atmospheres. But even with cutting-edge photonic nulling instruments, the achievable starlight suppression (null-depth) is only as good as the instrument’s wavefront control and its accuracy is only as good as the instrument’s calibration. Here, we present an approach wherein outputs from non-science channels of a photonic nulling chip are used as a precise null-depth calibration method and can also be used in real time for fringe tracking. This is achieved using a deep neural network to learn the true in-situ complex transfer function of the instrument and then predict the instrumental leakage contribution (at millisecond timescales) for the science (nulled) outputs, enabling accurate calibration. In this method, this pseudo-real-time approach is used instead of the statistical methods used in other techniques (such as null self calibration, or NSC) and also resolves the severe effect of read-noise seen when NSC is used with some detector types.","PeriodicalId":508807,"journal":{"name":"Journal of Astronomical Telescopes, Instruments, and Systems","volume":"335 1","pages":"048005 - 048005"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes, Instruments, and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.JATIS.9.4.048005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Photonic technologies have enabled a generation of nulling interferometers, such as the guided light interferometric nulling technology instrument, potentially capable of imaging exoplanets and circumstellar structure at extreme contrast ratios by suppressing contaminating starlight, and paving the way to the characterization of habitable planet atmospheres. But even with cutting-edge photonic nulling instruments, the achievable starlight suppression (null-depth) is only as good as the instrument’s wavefront control and its accuracy is only as good as the instrument’s calibration. Here, we present an approach wherein outputs from non-science channels of a photonic nulling chip are used as a precise null-depth calibration method and can also be used in real time for fringe tracking. This is achieved using a deep neural network to learn the true in-situ complex transfer function of the instrument and then predict the instrumental leakage contribution (at millisecond timescales) for the science (nulled) outputs, enabling accurate calibration. In this method, this pseudo-real-time approach is used instead of the statistical methods used in other techniques (such as null self calibration, or NSC) and also resolves the severe effect of read-noise seen when NSC is used with some detector types.
光子归零干涉测量中优化自校准和条纹跟踪的机器学习方法
摘要。光子技术催生了一代消隐干涉仪,如导光性干涉消隐技术仪器,通过抑制污染星光,有可能在极高对比度下成像系外行星和周星体结构,并为宜居行星大气表征铺平道路。但是,即使是最先进的光子消隐仪器,其可实现的星光抑制(消隐深度)也只能与仪器的波前控制一样好,其精度也只能与仪器的校准一样好。在这里,我们提出了一种方法,将光子消隐芯片非科学通道的输出用作精确的消隐深度校准方法,并可实时用于条纹跟踪。这是利用深度神经网络来学习仪器的真实原位复合传递函数,然后预测科学(归零)输出的仪器泄漏贡献(毫秒级),从而实现精确校准。在这种方法中,使用了这种伪实时方法,而不是其他技术(如空自校准或 NSC)中使用的统计方法,还解决了 NSC 与某些探测器类型一起使用时读取噪声的严重影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信