Unveiling weak auditory evoked potentials using data-driven filtering

Stefan Jacob, Christian Koch
{"title":"Unveiling weak auditory evoked potentials using data-driven filtering","authors":"Stefan Jacob, Christian Koch","doi":"10.1121/10.0023054","DOIUrl":null,"url":null,"abstract":"Auditory evoked potentials (AEPs) are commonly used to objectively evaluate sound perception in humans. Close to the hearing threshold and for low frequencies, efficient filtering of AEP from other brain activities is of major concern due to weak potentials and the requirement of long averaging times. Filtered AEP data are well-interpretable and useful, especially in medical and psychological diagnostics. Here, we present two data-driven approaches for efficient AEP filtering. First, neural networks of different architectures trained for EEG denoising are used to extract weak late-response AEP for low-frequency and infrasonic stimuli. During the design of the networks, we leveraged knowledge of the specific characteristics of the expected AEP data. Second, a singular value decomposition (SVD) of EEG data is evaluated, attempting to create classifiers for the presence of weak late-response AEP modes. We anticipate that the evaluation of AEP with data-driven methods can support researchers and scientists, for example, with real-time evaluation and diagnosis of acoustic-induced discomfort.","PeriodicalId":256727,"journal":{"name":"The Journal of the Acoustical Society of America","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of the Acoustical Society of America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0023054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Auditory evoked potentials (AEPs) are commonly used to objectively evaluate sound perception in humans. Close to the hearing threshold and for low frequencies, efficient filtering of AEP from other brain activities is of major concern due to weak potentials and the requirement of long averaging times. Filtered AEP data are well-interpretable and useful, especially in medical and psychological diagnostics. Here, we present two data-driven approaches for efficient AEP filtering. First, neural networks of different architectures trained for EEG denoising are used to extract weak late-response AEP for low-frequency and infrasonic stimuli. During the design of the networks, we leveraged knowledge of the specific characteristics of the expected AEP data. Second, a singular value decomposition (SVD) of EEG data is evaluated, attempting to create classifiers for the presence of weak late-response AEP modes. We anticipate that the evaluation of AEP with data-driven methods can support researchers and scientists, for example, with real-time evaluation and diagnosis of acoustic-induced discomfort.
利用数据驱动过滤揭示弱听觉诱发电位
听觉诱发电位(AEP)通常用于客观评估人类对声音的感知。在接近听阈和低频的情况下,由于电位较弱,且需要较长的平均时间,因此有效过滤听觉诱发电位与其他大脑活动之间的影响是一个主要问题。过滤后的 AEP 数据具有良好的可解释性和实用性,特别是在医疗和心理诊断方面。在此,我们介绍两种数据驱动的高效 AEP 滤波方法。首先,针对脑电图去噪训练的不同架构的神经网络被用于提取低频和次声刺激的弱晚期反应 AEP。在网络设计过程中,我们利用了预期 AEP 数据具体特征的知识。其次,我们评估了脑电图数据的奇异值分解 (SVD),尝试创建分类器,以确定是否存在弱晚期反应 AEP 模式。我们预计,利用数据驱动方法评估 AEP 可以为研究人员和科学家提供支持,例如,对声音引起的不适进行实时评估和诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信