Transposed Poisson structures on solvable and perfect Lie algebras

I. Kaygorodov, A. Khudoyberdiyev
{"title":"Transposed Poisson structures on solvable and perfect Lie algebras","authors":"I. Kaygorodov, A. Khudoyberdiyev","doi":"10.1088/1751-8121/ad1620","DOIUrl":null,"url":null,"abstract":"We described all transposed Poisson algebra structures on oscillator Lie algebras, i.e., on one-dimensional solvable extensions of the $(2n+1)$-dimensional Heisenberg algebra; on solvable Lie algebras with naturally graded filiform nilpotent radical; on $(n+1)$-dimensional solvable extensions of the $(2n+1)$-dimensional Heisenberg algebra; and on $n$-dimensional solvable extensions of the $n$-dimensional algebra with trivial multiplication. We also answered one question on transposed Poisson algebras early posted in a paper by Beites, Ferreira and Kaygorodov. Namely, we found that the semidirect product of ${\\mathfrak sl}_2$ and irreducible module gives a finite-dimensional Lie algebra with non-trivial $\\frac{1}{2}$-derivations, but without non-trivial transposed Poisson structures.","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad1620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We described all transposed Poisson algebra structures on oscillator Lie algebras, i.e., on one-dimensional solvable extensions of the $(2n+1)$-dimensional Heisenberg algebra; on solvable Lie algebras with naturally graded filiform nilpotent radical; on $(n+1)$-dimensional solvable extensions of the $(2n+1)$-dimensional Heisenberg algebra; and on $n$-dimensional solvable extensions of the $n$-dimensional algebra with trivial multiplication. We also answered one question on transposed Poisson algebras early posted in a paper by Beites, Ferreira and Kaygorodov. Namely, we found that the semidirect product of ${\mathfrak sl}_2$ and irreducible module gives a finite-dimensional Lie algebra with non-trivial $\frac{1}{2}$-derivations, but without non-trivial transposed Poisson structures.
可解和完备李代数上的变换泊松结构
我们描述了振荡器李代数上的所有转置泊松代数结构,即$(2n+1)$维海森堡代数的一维可解扩展上的结构;具有自然分级丝状零势基的可解李代数上的结构;$(2n+1)$维海森堡代数的$(n+1)$维可解扩展上的结构;以及具有三乘法的$n$维代数的$n$维可解扩展上的结构。我们还回答了贝特斯、费雷拉和卡伊戈罗多夫在论文中提出的一个关于转置泊松代数的问题。也就是说,我们发现 ${mathfrak sl}_2$ 和不可还原模块的半直接乘积给出了一个具有非三乘 $\frac{1}{2}$ 衍射的有限维李代数,但没有非三乘转置泊松结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信