On Automorphism-invariant multiplication modules over a noncommutative ring

IF 0.5 Q3 MATHEMATICS
L. Thuyet, T. C. Quynh
{"title":"On Automorphism-invariant multiplication modules over a noncommutative ring","authors":"L. Thuyet, T. C. Quynh","doi":"10.24330/ieja.1411145","DOIUrl":null,"url":null,"abstract":"One of the important classes of modules is the class of multiplication modules over a commutative ring. This topic has been considered by many authors and numerous results have been obtained in this area. After that, Tuganbaev also considered the multiplication module over a noncommutative ring. In this paper, we continue to consider the automorphism-invariance of multiplication modules over a noncommutative ring. We prove that if $R$ is a right duo ring and $M$ is a multiplication, finitely generated right $R$-module with a generating set $\\{m_1, \\dots , m_n\\}$ such that $r(m_i) = 0$ and $[m_iR: M] \\subseteq C(R)$ the center of $R$, then $M$ is projective. Moreover, if $R$ is a right duo, left quasi-duo, CMI ring and $M$ is a multiplication, non-singular, automorphism-invariant, finitely generated right $R$-module with a generating set $\\{m_1, \\dots , m_n\\}$ such that $r(m_i) = 0$ and $[m_iR: M] \\subseteq C(R)$ the center of $R$, then $M_R \\cong R$ is injective.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":"13 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1411145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

One of the important classes of modules is the class of multiplication modules over a commutative ring. This topic has been considered by many authors and numerous results have been obtained in this area. After that, Tuganbaev also considered the multiplication module over a noncommutative ring. In this paper, we continue to consider the automorphism-invariance of multiplication modules over a noncommutative ring. We prove that if $R$ is a right duo ring and $M$ is a multiplication, finitely generated right $R$-module with a generating set $\{m_1, \dots , m_n\}$ such that $r(m_i) = 0$ and $[m_iR: M] \subseteq C(R)$ the center of $R$, then $M$ is projective. Moreover, if $R$ is a right duo, left quasi-duo, CMI ring and $M$ is a multiplication, non-singular, automorphism-invariant, finitely generated right $R$-module with a generating set $\{m_1, \dots , m_n\}$ such that $r(m_i) = 0$ and $[m_iR: M] \subseteq C(R)$ the center of $R$, then $M_R \cong R$ is injective.
论非交换环上的自变不变乘法模块
模块的重要类别之一是交换环上的乘法模块类。许多学者都研究过这一课题,并在这一领域取得了许多成果。之后,图甘巴耶夫也考虑了非交换环上的乘法模块。在本文中,我们继续考虑非交换环上乘法模块的自变不变性。我们证明,如果 $R$ 是一个右杜环,并且 $M$ 是一个乘法、有限生成的右 $R$ 模块,它有一个生成集 $\{m_1, \dots , m_n\}$ ,使得 $r(m_i) = 0$ 并且 $[m_iR: M] \subseteq C(R)$ 是 $R$ 的中心,那么 $M$ 是投影的。此外,如果 $R$ 是一个右二元、左准二元、CMI 环,并且 $M$ 是一个乘法、非奇异、自变量不变、有限生成的右 $R$ 模块,它有一个生成集 $\{m_1, \dots , m_n\}$,使得 $r(m_i) = 0$ 并且 $[m_iR: M] \subseteq C(R)$ 是 $R$ 的中心,那么 $M_R \cong R$ 是注入的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信