Shazia Hanif, Suryadijaya Adiputra, I. Yaningsih, E. P. Budiana
{"title":"Adsorption Characteristics of Silica Gel-Water Pairs in Personal Protection Equipment","authors":"Shazia Hanif, Suryadijaya Adiputra, I. Yaningsih, E. P. Budiana","doi":"10.20961/mekanika.v22i2.71250","DOIUrl":null,"url":null,"abstract":"The utilization of RD-type silica gel material as an adsorbent within the Personal Protective Equipment (PPE) layer underwent a comprehensive analysis aimed at elucidating its unique adsorption characteristics through the application of MATLAB programming. This study aims to determine the characteristics of silica gel RD to water vapor in terms of adsorption capacity and rate. A layer modeling approach was employed to simulate the Personal Protective Equipment (PPE), which comprised four distinct layers: the surrounding environment air, the fabric layer, the RD-type silica gel layer, and the air gap separating the silica gel from the skin surface. The simulation encompassed environmental conditions set at 27℃, while the human body's temperature was maintained at 35℃. This study uses a simulation method using GAB (Guggenheim–Anderson–de Boer) modeling calculations to determine isothermal characteristics and LDF (Linear Driving Force) modeling to determine kinetic characteristics with an adsorbent temperature of 26.84℃. The simulation results show that the isothermal characteristics of silica gel RD at a relative humidity of 60% or a relative pressure of 0.6 have an absorption capacity of 0.38 kg/kg. Moreover, the kinetic characteristics of silica gel RD have an absorption rate of 0.38 kg/kg of water vapor with a time of 980 s until a significant reduction in the absorption value occurs.","PeriodicalId":356258,"journal":{"name":"Mekanika: Majalah Ilmiah Mekanika","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mekanika: Majalah Ilmiah Mekanika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20961/mekanika.v22i2.71250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of RD-type silica gel material as an adsorbent within the Personal Protective Equipment (PPE) layer underwent a comprehensive analysis aimed at elucidating its unique adsorption characteristics through the application of MATLAB programming. This study aims to determine the characteristics of silica gel RD to water vapor in terms of adsorption capacity and rate. A layer modeling approach was employed to simulate the Personal Protective Equipment (PPE), which comprised four distinct layers: the surrounding environment air, the fabric layer, the RD-type silica gel layer, and the air gap separating the silica gel from the skin surface. The simulation encompassed environmental conditions set at 27℃, while the human body's temperature was maintained at 35℃. This study uses a simulation method using GAB (Guggenheim–Anderson–de Boer) modeling calculations to determine isothermal characteristics and LDF (Linear Driving Force) modeling to determine kinetic characteristics with an adsorbent temperature of 26.84℃. The simulation results show that the isothermal characteristics of silica gel RD at a relative humidity of 60% or a relative pressure of 0.6 have an absorption capacity of 0.38 kg/kg. Moreover, the kinetic characteristics of silica gel RD have an absorption rate of 0.38 kg/kg of water vapor with a time of 980 s until a significant reduction in the absorption value occurs.