Kernelization for Counting Problems on Graphs: Preserving the Number of Minimum Solutions

B. Jansen, Bart van der Steenhoven
{"title":"Kernelization for Counting Problems on Graphs: Preserving the Number of Minimum Solutions","authors":"B. Jansen, Bart van der Steenhoven","doi":"10.48550/arXiv.2310.04303","DOIUrl":null,"url":null,"abstract":"A kernelization for a parameterized decision problem $\\mathcal{Q}$ is a polynomial-time preprocessing algorithm that reduces any parameterized instance $(x,k)$ into an instance $(x',k')$ whose size is bounded by a function of $k$ alone and which has the same yes/no answer for $\\mathcal{Q}$. Such preprocessing algorithms cannot exist in the context of counting problems, when the answer to be preserved is the number of solutions, since this number can be arbitrarily large compared to $k$. However, we show that for counting minimum feedback vertex sets of size at most $k$, and for counting minimum dominating sets of size at most $k$ in a planar graph, there is a polynomial-time algorithm that either outputs the answer or reduces to an instance $(G',k')$ of size polynomial in $k$ with the same number of minimum solutions. This shows that a meaningful theory of kernelization for counting problems is possible and opens the door for future developments. Our algorithms exploit that if the number of solutions exceeds $2^{\\mathsf{poly}(k)}$, the size of the input is exponential in terms of $k$ so that the running time of a parameterized counting algorithm can be bounded by $\\mathsf{poly}(n)$. Otherwise, we can use gadgets that slightly increase $k$ to represent choices among $2^{O(k)}$ options by only $\\mathsf{poly}(k)$ vertices.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"1 1","pages":"27:1-27:15"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2310.04303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A kernelization for a parameterized decision problem $\mathcal{Q}$ is a polynomial-time preprocessing algorithm that reduces any parameterized instance $(x,k)$ into an instance $(x',k')$ whose size is bounded by a function of $k$ alone and which has the same yes/no answer for $\mathcal{Q}$. Such preprocessing algorithms cannot exist in the context of counting problems, when the answer to be preserved is the number of solutions, since this number can be arbitrarily large compared to $k$. However, we show that for counting minimum feedback vertex sets of size at most $k$, and for counting minimum dominating sets of size at most $k$ in a planar graph, there is a polynomial-time algorithm that either outputs the answer or reduces to an instance $(G',k')$ of size polynomial in $k$ with the same number of minimum solutions. This shows that a meaningful theory of kernelization for counting problems is possible and opens the door for future developments. Our algorithms exploit that if the number of solutions exceeds $2^{\mathsf{poly}(k)}$, the size of the input is exponential in terms of $k$ so that the running time of a parameterized counting algorithm can be bounded by $\mathsf{poly}(n)$. Otherwise, we can use gadgets that slightly increase $k$ to represent choices among $2^{O(k)}$ options by only $\mathsf{poly}(k)$ vertices.
图上计数问题的核化:保留最小解的数量
参数化决策问题 $\mathcal{Q}$ 的内核化是一种多项式时间预处理算法,它可以将任何参数化实例 $(x,k)$ 简化为实例 $(x',k')$,而实例的大小仅由 $k$ 的函数限定,并且对于 $\mathcal{Q}$ 具有相同的是/否答案。当需要保留的答案是解的数量时,这种预处理算法在计数问题中是不存在的,因为与 $k$ 相比,解的数量可以是任意大的。然而,我们证明,对于计算大小至多为 $k$ 的最小反馈顶点集,以及计算平面图中大小至多为 $k$ 的最小支配集,存在一种多项式时间算法,要么输出答案,要么还原为大小为 $k$ 的多项式实例 $(G',k')$,且具有相同的最小解数。这表明,针对计数问题的有意义的内核化理论是可能的,并为未来的发展打开了大门。我们的算法利用了这样一个特点:如果解的数量超过 $2^{\mathsf{poly}(k)}$,输入的大小就是 $k$ 的指数,这样参数化计数算法的运行时间就可以被 $\mathsf{poly}(n)$限定。否则,我们可以使用略微增加 $k$ 的小工具,只用 $\mathsf{poly}(k)$ 顶点来表示在 $2^{O(k)}$ 选项中的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信