On the Parameterized Complexity of Multiway Near-Separator

B. Jansen, S. K. Roy
{"title":"On the Parameterized Complexity of Multiway Near-Separator","authors":"B. Jansen, S. K. Roy","doi":"10.48550/arXiv.2310.04332","DOIUrl":null,"url":null,"abstract":"We study a new graph separation problem called Multiway Near-Separator. Given an undirected graph $G$, integer $k$, and terminal set $T \\subseteq V(G)$, it asks whether there is a vertex set $S \\subseteq V(G) \\setminus T$ of size at most $k$ such that in graph $G-S$, no pair of distinct terminals can be connected by two pairwise internally vertex-disjoint paths. Hence each terminal pair can be separated in $G-S$ by removing at most one vertex. The problem is therefore a generalization of (Node) Multiway Cut, which asks for a vertex set for which each terminal is in a different component of $G-S$. We develop a fixed-parameter tractable algorithm for Multiway Near-Separator running in time $2^{O(k \\log k)} * n^{O(1)}$. Our algorithm is based on a new pushing lemma for solutions with respect to important separators, along with two problem-specific ingredients. The first is a polynomial-time subroutine to reduce the number of terminals in the instance to a polynomial in the solution size $k$ plus the size of a given suboptimal solution. The second is a polynomial-time algorithm that, given a graph $G$ and terminal set $T \\subseteq V(G)$ along with a single vertex $x \\in V(G)$ that forms a multiway near-separator, computes a 14-approximation for the problem of finding a multiway near-separator not containing $x$.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"263 1","pages":"28:1-28:18"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2310.04332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a new graph separation problem called Multiway Near-Separator. Given an undirected graph $G$, integer $k$, and terminal set $T \subseteq V(G)$, it asks whether there is a vertex set $S \subseteq V(G) \setminus T$ of size at most $k$ such that in graph $G-S$, no pair of distinct terminals can be connected by two pairwise internally vertex-disjoint paths. Hence each terminal pair can be separated in $G-S$ by removing at most one vertex. The problem is therefore a generalization of (Node) Multiway Cut, which asks for a vertex set for which each terminal is in a different component of $G-S$. We develop a fixed-parameter tractable algorithm for Multiway Near-Separator running in time $2^{O(k \log k)} * n^{O(1)}$. Our algorithm is based on a new pushing lemma for solutions with respect to important separators, along with two problem-specific ingredients. The first is a polynomial-time subroutine to reduce the number of terminals in the instance to a polynomial in the solution size $k$ plus the size of a given suboptimal solution. The second is a polynomial-time algorithm that, given a graph $G$ and terminal set $T \subseteq V(G)$ along with a single vertex $x \in V(G)$ that forms a multiway near-separator, computes a 14-approximation for the problem of finding a multiway near-separator not containing $x$.
论多路近分隔器的参数化复杂性
我们研究的是一个新的图分离问题,称为多向近似分离器(Multiway Near-Separator)。给定一个无向图 $G$、整数 $k$、终端集 $T \subseteq V(G)$,它问是否存在一个大小最多为 $k$ 的顶点集 $S \subseteq V(G) \setminus T$,使得在图 $G-S$ 中,没有一对不同的终端可以通过两条成对的内部顶点相交的路径连接。因此,在 $G-S$ 中,每个终端对最多可以通过移除一个顶点来分离。因此,这个问题是(节点)多路切割的一般化,它要求找到一个顶点集,其中每个终点都位于 $G-S$ 的不同分量中。我们为多路近似分离器开发了一种固定参数可控算法,运行时间为 $2^{O(k \log k)} * n^{O(1)}$。我们的算法基于一个关于重要分离器解的新推导lemma,以及两个特定问题的要素。第一个是一个多项式时间子程序,用于将实例中的终端数量减少到解决方案大小 $k$ 加上给定次优解决方案大小的多项式。第二种是多项式时间算法,该算法给定一个图 $G$、终端集 $T \subseteq V(G)$ 以及 V(G)$ 中形成多路近分隔符的单个顶点 $x \in,为寻找不包含 $x$ 的多路近分隔符问题计算出一个 14 近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信