Investigating The Effectiveness of Various Convolutional Neural Network Model Architectures for Skin Cancer Melanoma Classification

Rizky Hafizh Jatmiko, Yoga Pristyanto
{"title":"Investigating The Effectiveness of Various Convolutional Neural Network Model Architectures for Skin Cancer Melanoma Classification","authors":"Rizky Hafizh Jatmiko, Yoga Pristyanto","doi":"10.30812/matrik.v23i1.3185","DOIUrl":null,"url":null,"abstract":"Melanoma is one of the most dangerous types of skin cancer. Since 2018, the number of skin cancer cases in the US has increased and exceeded 100,000. Melanoma is the third most common cancer in Indonesia, following womb cancer and breast cancer. Standard detection of melanoma skin cancer biopsy is costly and time-consuming. The purpose of this research is to build and compare melanoma skin cancer detection using various Convolutional Neural Network method. This research used four CNN model architectures methods, VGG-16, LeNet, Xception, and MobileNet. The dataset for this research is image data that consists of 9605 data divided into benign and malignant classes. The data will be augmented to increase its quantity. After that, the data will be trained using four CNN architecture models and evaluated using the confusion matrix. The result of this study is that Xception model has the best accuracy and the lowest loss, with 93% accuracy and 19% loss, with precision 93%, recall 93,5%, and f1-score 93%. Whereas the other model, VGG-16 gives 90 % accuracy, 27% loss, LeNet 89,7% accuracy, 28% loss, and mobileNet 90,8% accuracy and 22,5% loss.","PeriodicalId":364657,"journal":{"name":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/matrik.v23i1.3185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Melanoma is one of the most dangerous types of skin cancer. Since 2018, the number of skin cancer cases in the US has increased and exceeded 100,000. Melanoma is the third most common cancer in Indonesia, following womb cancer and breast cancer. Standard detection of melanoma skin cancer biopsy is costly and time-consuming. The purpose of this research is to build and compare melanoma skin cancer detection using various Convolutional Neural Network method. This research used four CNN model architectures methods, VGG-16, LeNet, Xception, and MobileNet. The dataset for this research is image data that consists of 9605 data divided into benign and malignant classes. The data will be augmented to increase its quantity. After that, the data will be trained using four CNN architecture models and evaluated using the confusion matrix. The result of this study is that Xception model has the best accuracy and the lowest loss, with 93% accuracy and 19% loss, with precision 93%, recall 93,5%, and f1-score 93%. Whereas the other model, VGG-16 gives 90 % accuracy, 27% loss, LeNet 89,7% accuracy, 28% loss, and mobileNet 90,8% accuracy and 22,5% loss.
研究各种卷积神经网络模型架构在皮肤癌黑色素瘤分类中的有效性
黑色素瘤是最危险的皮肤癌类型之一。2018 年以来,美国皮肤癌病例数量不断增加,已超过 10 万例。在印度尼西亚,黑色素瘤是继子宫癌和乳腺癌之后的第三大常见癌症。黑色素瘤皮肤癌活检的标准检测成本高、耗时长。本研究的目的是使用各种卷积神经网络方法建立并比较黑色素瘤皮肤癌检测。这项研究使用了四种 CNN 模型架构方法:VGG-16、LeNet、Xception 和 MobileNet。本研究的数据集是由 9605 个数据组成的图像数据,分为良性和恶性两类。数据集将进行扩充,以增加其数量。之后,将使用四种 CNN 架构模型对数据进行训练,并使用混淆矩阵对数据进行评估。研究结果表明,Xception 模型的准确率最高,损失最低,准确率为 93%,损失为 19%,精确度为 93%,召回率为 93.5%,f1-score 为 93%。而其他模型,VGG-16 的准确率为 90%,损失率为 27%;LeNet 的准确率为 89.7%,损失率为 28%;mobileNet 的准确率为 90.8%,损失率为 22.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信