Thermal Analysis of Al and Cu Metals Heat Sinks with Different Geometries at Raspberry Pi Control Cards Used for Image Analysis-Based Drone Control in Smart Agriculture Drones
{"title":"Thermal Analysis of Al and Cu Metals Heat Sinks with Different Geometries at Raspberry Pi Control Cards Used for Image Analysis-Based Drone Control in Smart Agriculture Drones","authors":"A. Beyaz","doi":"10.33724/zm.1344450","DOIUrl":null,"url":null,"abstract":"A heat sink is a tool for dissipating the heat generated by electronic parts. The equipment's specific operating conditions necessitate the equipment's extra heat dissipation. This research compared and optimized the temperature and heat flux parameters based on the results of the design of a heat sink for CPU, RAM, and PCLe to a USB 3.0 bridge. It is aimed at an examination of the advantages and disadvantages of using square, rectangular, and circular shapes in the design of a heat sink. Copper and aluminum (Al) are the most common heat sink materials (Cu). Autodesk Inventor Pro software with Nastran module is used for design and thermal analysis. According to Inventor Nastran's thermal analysis results it is found that there is no significant difference between Al and Cu materials based on cooling capacity at designed models. Also, it is found that the geometry of the heat sinks directly affects the cooling capacity of a heat sink. The application results show that the cooling achievement is directly related to the correct heatsink design and enough surface area. According to Inventor Nastran's thermal analysis results it is found that there is no important difference between Al and Cu materials based on cooling capacity at designed models. Also, it is found that the geometry of the heat sinks directly affects the cooling capacity of a heat sink. The application results show that the cooling achievement is directly related to the correct heatsink design and enough surface area.","PeriodicalId":507319,"journal":{"name":"Ziraat Mühendisliği","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ziraat Mühendisliği","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33724/zm.1344450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A heat sink is a tool for dissipating the heat generated by electronic parts. The equipment's specific operating conditions necessitate the equipment's extra heat dissipation. This research compared and optimized the temperature and heat flux parameters based on the results of the design of a heat sink for CPU, RAM, and PCLe to a USB 3.0 bridge. It is aimed at an examination of the advantages and disadvantages of using square, rectangular, and circular shapes in the design of a heat sink. Copper and aluminum (Al) are the most common heat sink materials (Cu). Autodesk Inventor Pro software with Nastran module is used for design and thermal analysis. According to Inventor Nastran's thermal analysis results it is found that there is no significant difference between Al and Cu materials based on cooling capacity at designed models. Also, it is found that the geometry of the heat sinks directly affects the cooling capacity of a heat sink. The application results show that the cooling achievement is directly related to the correct heatsink design and enough surface area. According to Inventor Nastran's thermal analysis results it is found that there is no important difference between Al and Cu materials based on cooling capacity at designed models. Also, it is found that the geometry of the heat sinks directly affects the cooling capacity of a heat sink. The application results show that the cooling achievement is directly related to the correct heatsink design and enough surface area.