Modern Optimization Techniques Based PID Controller Tuning for the Speed Control of a DC Motor

Subrata Pandey
{"title":"Modern Optimization Techniques Based PID Controller Tuning for the Speed Control of a DC Motor","authors":"Subrata Pandey","doi":"10.36647/ciml/04.02.a004","DOIUrl":null,"url":null,"abstract":"In this paper, the optimal configuration of the Proportional Integral Derivative (PID) controller for the speed control of a DC motor are determined and compared using five optimization algorithms. The five optimization algorithms are respectively Ant Lion Optimization (ALO), Grey Wolf Optimizer (GWO), Moth-Flame Optimization (MFO), Multi-Verse Optimization (MVO) and Salp Swarm Optimization (SSO). The objective function uses The Integral of Time multiplied by Absolute Error (ITAE) as the performance index. A comparison of all these methods is done using the following step response parameters - steady-state error, settling time, maximum overshoot and rise time. ALO performed best among all the optimization algorithms.","PeriodicalId":203221,"journal":{"name":"Computational Intelligence and Machine Learning","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36647/ciml/04.02.a004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the optimal configuration of the Proportional Integral Derivative (PID) controller for the speed control of a DC motor are determined and compared using five optimization algorithms. The five optimization algorithms are respectively Ant Lion Optimization (ALO), Grey Wolf Optimizer (GWO), Moth-Flame Optimization (MFO), Multi-Verse Optimization (MVO) and Salp Swarm Optimization (SSO). The objective function uses The Integral of Time multiplied by Absolute Error (ITAE) as the performance index. A comparison of all these methods is done using the following step response parameters - steady-state error, settling time, maximum overshoot and rise time. ALO performed best among all the optimization algorithms.
基于现代优化技术的直流电机速度控制 PID 控制器调试
本文使用五种优化算法确定并比较了用于直流电机速度控制的比例积分微分(PID)控制器的最佳配置。这五种优化算法分别是蚁狮优化算法(ALO)、灰狼优化算法(GWO)、飞蛾-火焰优化算法(MFO)、多矢量优化算法(MVO)和萨尔普群优化算法(SSO)。目标函数采用时间积分乘以绝对误差(ITAE)作为性能指标。使用以下阶跃响应参数对所有这些方法进行了比较:稳态误差、稳定时间、最大过冲和上升时间。在所有优化算法中,ALO 的性能最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信