Zhengrong Zhang, Huiting Liu, Yongjin Yu, Yangchuan Ke, Xiaoqin Wang
{"title":"Study on effects of metakaolin on the silica-cement slurry performance under ultra-high temperature conditions","authors":"Zhengrong Zhang, Huiting Liu, Yongjin Yu, Yangchuan Ke, Xiaoqin Wang","doi":"10.56028/aetr.8.1.319.2023","DOIUrl":null,"url":null,"abstract":"In oil and gas exploration and development, the complex working conditions of high temperature and high pressure are increasing, and the strength decline of silica-cement often occurs under such conditions. In this work, the metakaolin influence on the mechanical properties and micro-structure of silica-cement at 240 ℃ and 21 MPa condition is comprehensively studied. XRD technique investigated the chemical composition of cement crystal phase, and SEM observed the micro-morphology of high temperature cement. Results showed that the loading metakaolin has reduced porosity by 12.86%, air permeability while greatly increased nanopore (<50nm) by 36.47% and increased nanopore (<10 nm) by 10.34%. Thus, the cement permeability reduced greatly or its anti-channelling enhanced, that is, such results improved the comprehensive performance of cement slurry. These observations, combined with the previously reported the remarkable enhancement of the MK cement compressive strength, represent a major step toward the development of strength retrogression-resistant material at high temperature.","PeriodicalId":502380,"journal":{"name":"Advances in Engineering Technology Research","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56028/aetr.8.1.319.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In oil and gas exploration and development, the complex working conditions of high temperature and high pressure are increasing, and the strength decline of silica-cement often occurs under such conditions. In this work, the metakaolin influence on the mechanical properties and micro-structure of silica-cement at 240 ℃ and 21 MPa condition is comprehensively studied. XRD technique investigated the chemical composition of cement crystal phase, and SEM observed the micro-morphology of high temperature cement. Results showed that the loading metakaolin has reduced porosity by 12.86%, air permeability while greatly increased nanopore (<50nm) by 36.47% and increased nanopore (<10 nm) by 10.34%. Thus, the cement permeability reduced greatly or its anti-channelling enhanced, that is, such results improved the comprehensive performance of cement slurry. These observations, combined with the previously reported the remarkable enhancement of the MK cement compressive strength, represent a major step toward the development of strength retrogression-resistant material at high temperature.