Research on Named Entity Recognition Method of Chinese Classics Under the Supervision of Domain Knowledge

Wenjuan Zhao, Zhongbao Liu, Jian Lian
{"title":"Research on Named Entity Recognition Method of Chinese Classics Under the Supervision of Domain Knowledge","authors":"Wenjuan Zhao, Zhongbao Liu, Jian Lian","doi":"10.56028/aetr.8.1.344.2023","DOIUrl":null,"url":null,"abstract":"The current dominant named entity recognition methods of Chinese classics are classified as data-driven methods, which are limited by the data quality. The domain knowledge is introduced in this paper to supervise the process of the named entity recognition, so as to solve the poor performance problem because of the low-quality data. The experiments on the Historical Records corpus show that compared with the domain knowledge unsupervised case, the average accuracy, recall rate, and F1 value have respectively improved by 2.76%, 2.70%, and 2.75% under the supervision of domain knowledge. Domain knowledge plays an important role in improving the performance of the named entity recognition methods of Chinese classics.","PeriodicalId":502380,"journal":{"name":"Advances in Engineering Technology Research","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56028/aetr.8.1.344.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The current dominant named entity recognition methods of Chinese classics are classified as data-driven methods, which are limited by the data quality. The domain knowledge is introduced in this paper to supervise the process of the named entity recognition, so as to solve the poor performance problem because of the low-quality data. The experiments on the Historical Records corpus show that compared with the domain knowledge unsupervised case, the average accuracy, recall rate, and F1 value have respectively improved by 2.76%, 2.70%, and 2.75% under the supervision of domain knowledge. Domain knowledge plays an important role in improving the performance of the named entity recognition methods of Chinese classics.
领域知识指导下的中国古典文学命名实体识别方法研究
目前主流的中文经典命名实体识别方法属于数据驱动型方法,受到数据质量的限制。本文引入领域知识对命名实体识别过程进行监督,从而解决了因数据质量低而导致识别效果不佳的问题。对历史记录语料库的实验表明,与无领域知识监督的情况相比,在领域知识的监督下,平均准确率、召回率和 F1 值分别提高了 2.76%、2.70% 和 2.75%。领域知识在提高中文经典命名实体识别方法的性能方面发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信