{"title":"Strongly Graded Modules and Positively Graded Modules which are Unique Factorization Modules","authors":"Iwan Ernanto, Indah E. Wijayanti, Akira Ueda","doi":"10.24330/ieja.1404435","DOIUrl":null,"url":null,"abstract":"Let $M=\\oplus_{n\\in \\mathbb{Z}}M_{n}$ be a strongly graded module over strongly graded ring $D=\\oplus_{n\\in \\mathbb{Z}} D_{n}$. In this paper, we prove that if $M_{0}$ is a unique factorization module (UFM for short) over $D_{0}$ and $D$ is a unique factorization domain (UFD for short), then $M$ is a UFM over $D$. Furthermore, if $D_{0}$ is a Noetherian domain, we give a necessary and sufficient condition for a positively graded module $L=\\oplus_{n\\in \\mathbb{Z}_{0}}M_{n}$ to be a UFM over positively graded domain $R=\\oplus_{n\\in \\mathbb{Z}_{0}}D_{n}$.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":"27 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1404435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $M=\oplus_{n\in \mathbb{Z}}M_{n}$ be a strongly graded module over strongly graded ring $D=\oplus_{n\in \mathbb{Z}} D_{n}$. In this paper, we prove that if $M_{0}$ is a unique factorization module (UFM for short) over $D_{0}$ and $D$ is a unique factorization domain (UFD for short), then $M$ is a UFM over $D$. Furthermore, if $D_{0}$ is a Noetherian domain, we give a necessary and sufficient condition for a positively graded module $L=\oplus_{n\in \mathbb{Z}_{0}}M_{n}$ to be a UFM over positively graded domain $R=\oplus_{n\in \mathbb{Z}_{0}}D_{n}$.
期刊介绍:
The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.