Strongly Graded Modules and Positively Graded Modules which are Unique Factorization Modules

IF 0.5 Q3 MATHEMATICS
Iwan Ernanto, Indah E. Wijayanti, Akira Ueda
{"title":"Strongly Graded Modules and Positively Graded Modules which are Unique Factorization Modules","authors":"Iwan Ernanto, Indah E. Wijayanti, Akira Ueda","doi":"10.24330/ieja.1404435","DOIUrl":null,"url":null,"abstract":"Let $M=\\oplus_{n\\in \\mathbb{Z}}M_{n}$ be a strongly graded module over strongly graded ring $D=\\oplus_{n\\in \\mathbb{Z}} D_{n}$. In this paper, we prove that if $M_{0}$ is a unique factorization module (UFM for short) over $D_{0}$ and $D$ is a unique factorization domain (UFD for short), then $M$ is a UFM over $D$. Furthermore, if $D_{0}$ is a Noetherian domain, we give a necessary and sufficient condition for a positively graded module $L=\\oplus_{n\\in \\mathbb{Z}_{0}}M_{n}$ to be a UFM over positively graded domain $R=\\oplus_{n\\in \\mathbb{Z}_{0}}D_{n}$.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":"27 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1404435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $M=\oplus_{n\in \mathbb{Z}}M_{n}$ be a strongly graded module over strongly graded ring $D=\oplus_{n\in \mathbb{Z}} D_{n}$. In this paper, we prove that if $M_{0}$ is a unique factorization module (UFM for short) over $D_{0}$ and $D$ is a unique factorization domain (UFD for short), then $M$ is a UFM over $D$. Furthermore, if $D_{0}$ is a Noetherian domain, we give a necessary and sufficient condition for a positively graded module $L=\oplus_{n\in \mathbb{Z}_{0}}M_{n}$ to be a UFM over positively graded domain $R=\oplus_{n\in \mathbb{Z}_{0}}D_{n}$.
作为唯一因式分解模块的强分级模块和正分级模块
让 $M=\oplus_{n\in \mathbb{Z}}M_{n}$ 是强梯度环 $D=\oplus_{n\in \mathbb{Z}} 上的强梯度模块。D_{n}$.本文将证明,如果 $M_{0}$ 是在 $D_{0}$ 上的唯一因式分解模块(简称 UFM),且 $D$ 是唯一因式分解域(简称 UFD),那么 $M$ 是在 $D$ 上的 UFM。此外,如果 $D_{0}$ 是一个诺特域,我们给出了一个必要条件和充分条件,即正梯度模$L=\oplus_{n\in \mathbb{Z}_{0}}M_{n}$ 是在正梯度域 $R=\oplus_{n\in \mathbb{Z}_{0}}D_{n}$上的 UFM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信