{"title":"Near-Optimal Packet Scheduling in Multihop Networks with End-to-End Deadline Constraints","authors":"Christos Tsanikidis, Javad Ghaderi","doi":"10.1145/3626781","DOIUrl":null,"url":null,"abstract":"Scheduling packets with end-to-end deadline constraints in multihop networks is an important problem that has been notoriously difficult to tackle. Recently, there has been progress on this problem in the worst-case traffic setting, with the objective of maximizing the number of packets delivered within their deadlines. Specifically, the proposed algorithms were shown to achieve Ω(1/log(L)) fraction of the optimal objective value if the minimum link capacity in the network is Cmin =Ω(log (L)), where L is the maximum length of a packet's route in the network (which is bounded by the packet's maximum deadline). However, such guarantees can be quite pessimistic due to the strict worst-case traffic assumption and may not accurately reflect real-world settings. In this work, we aim to address this limitation by exploring whether it is possible to design algorithms that achieve a constant fraction of the optimal value while relaxing the worst-case traffic assumption. We provide a positive answer by demonstrating that in stochastic traffic settings, such as i.i.d. packet arrivals, near-optimal, (1-ε)-approximation algorithms can be designed if Cmin = Ω(log (L/ε)/ε2). To the best of our knowledge, this is the first result that shows this problem can be solved near-optimally under nontrivial assumptions on traffic and link capacity. We further present extended simulations using real network traces with non-stationary traffic, which demonstrate that our algorithms outperform worst-case-based algorithms in practical settings.","PeriodicalId":510624,"journal":{"name":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","volume":"3 1","pages":"1 - 32"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Scheduling packets with end-to-end deadline constraints in multihop networks is an important problem that has been notoriously difficult to tackle. Recently, there has been progress on this problem in the worst-case traffic setting, with the objective of maximizing the number of packets delivered within their deadlines. Specifically, the proposed algorithms were shown to achieve Ω(1/log(L)) fraction of the optimal objective value if the minimum link capacity in the network is Cmin =Ω(log (L)), where L is the maximum length of a packet's route in the network (which is bounded by the packet's maximum deadline). However, such guarantees can be quite pessimistic due to the strict worst-case traffic assumption and may not accurately reflect real-world settings. In this work, we aim to address this limitation by exploring whether it is possible to design algorithms that achieve a constant fraction of the optimal value while relaxing the worst-case traffic assumption. We provide a positive answer by demonstrating that in stochastic traffic settings, such as i.i.d. packet arrivals, near-optimal, (1-ε)-approximation algorithms can be designed if Cmin = Ω(log (L/ε)/ε2). To the best of our knowledge, this is the first result that shows this problem can be solved near-optimally under nontrivial assumptions on traffic and link capacity. We further present extended simulations using real network traces with non-stationary traffic, which demonstrate that our algorithms outperform worst-case-based algorithms in practical settings.