Normality of Rees algebras of generalized mixed product ideals

IF 0.5 Q3 MATHEMATICS
M. La Barbiera, R. Moghimipor
{"title":"Normality of Rees algebras of generalized mixed product ideals","authors":"M. La Barbiera, R. Moghimipor","doi":"10.24330/ieja.1402961","DOIUrl":null,"url":null,"abstract":"Let $K$ be a field and $K[x_1,x_{2}]$ the polynomial ring in two variables over $K$ with each $x_i$ of degree $1$. Let $L$ be the generalized mixed product ideal induced by a monomial ideal $I\\subset K[x_1,x_2]$, where the ideals substituting the monomials in $I$ are squarefree Veronese ideals. In this paper, we study the integral closure of $L$, and the normality of $\\mathcal{R}(L)$, the Rees algebra of $L$. Furthermore, we give a geometric description of the integral closure of $\\mathcal{R}(L)$.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":"54 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1402961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $K$ be a field and $K[x_1,x_{2}]$ the polynomial ring in two variables over $K$ with each $x_i$ of degree $1$. Let $L$ be the generalized mixed product ideal induced by a monomial ideal $I\subset K[x_1,x_2]$, where the ideals substituting the monomials in $I$ are squarefree Veronese ideals. In this paper, we study the integral closure of $L$, and the normality of $\mathcal{R}(L)$, the Rees algebra of $L$. Furthermore, we give a geometric description of the integral closure of $\mathcal{R}(L)$.
广义混合乘积理想的里斯代数的规范性
设 $K$ 是一个域,$K[x_1,x_{2}]$ 是在 $K$ 上的两变量多项式环,每个 $x_i$ 的阶数为 1$。让 $L$ 成为由单项式理想 $I (子集 K[x_1,x_2]$ )诱导的广义混合积理想,其中取代 $I$ 中单项式的理想是无平方的维罗纳理想。在本文中,我们研究了 $L$ 的积分闭包,以及 $L$ 的里斯代数 $\mathcal{R}(L)$ 的规范性。此外,我们还给出了 $\mathcal{R}(L)$ 的积分闭包的几何描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信