Improving Testing of Deep-learning Systems

Q3 Computer Science
Queue Pub Date : 2023-10-31 DOI:10.1145/3631340
Harsh Deokuliar, R. Sangwan, Y. Badr, S. Srinivasan
{"title":"Improving Testing of Deep-learning Systems","authors":"Harsh Deokuliar, R. Sangwan, Y. Badr, S. Srinivasan","doi":"10.1145/3631340","DOIUrl":null,"url":null,"abstract":"We used differential testing to generate test data to improve diversity of data points in the test dataset and then used mutation testing to check the quality of the test data in terms of diversity. Combining differential and mutation testing in this fashion improves mutation score, a test data quality metric, indicating overall improvement in testing effectiveness and quality of the test data when testing deep learning systems.","PeriodicalId":39042,"journal":{"name":"Queue","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Queue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

We used differential testing to generate test data to improve diversity of data points in the test dataset and then used mutation testing to check the quality of the test data in terms of diversity. Combining differential and mutation testing in this fashion improves mutation score, a test data quality metric, indicating overall improvement in testing effectiveness and quality of the test data when testing deep learning systems.
改进深度学习系统的测试
我们使用差分测试生成测试数据,以提高测试数据集中数据点的多样性,然后使用突变测试检查测试数据在多样性方面的质量。以这种方式结合差分测试和突变测试,可以提高测试数据质量指标--突变得分,这表明在测试深度学习系统时,测试效率和测试数据质量都得到了全面提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Queue
Queue Computer Science-Computer Science (all)
CiteScore
1.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信