Sardar Muhammad Aneeq Khan, A. Badar, M. S. Siddiqui, Muhammad Zeeshan Siddique, Muhammad Saad Ul Haq, Fahad Sarfraz Butt
{"title":"Modeling and comparative assessment of solar thermal systems for space and water heating: Liquid water versus air-based systems","authors":"Sardar Muhammad Aneeq Khan, A. Badar, M. S. Siddiqui, Muhammad Zeeshan Siddique, Muhammad Saad Ul Haq, Fahad Sarfraz Butt","doi":"10.1063/5.0175130","DOIUrl":null,"url":null,"abstract":"This work pertains to the transient modeling and comparative study of active solar thermal space and water heating systems using liquid and air-type solar thermal collectors as the main energy source. The study utilizes TRNSYS to simulate the two systems in the context of Taxila's weather data (located at 33.74°N, 72.83°E), with the goal of meeting peak space and domestic water heating demands of 20 kW and 200 lit/day, respectively. The liquid water-based system (S-1) is primarily composed of a liquid solar collector, thermal storage, an auxiliary heater, connections to the hot water supply, and the space heating load through a water–air heat exchanger. In contrast, the air-based system (S-2), employs a pebble bed storage to store heat extracted from the solar thermal air collector. The heated air is subsequently used directly for space heating and passed through an air–water heat exchanger for water heating. Dynamic simulations of both systems span the entire winter season, and various performance metrics, including solar fraction, primary energy savings, and solar collector thermal efficiency, are computed. The results revealed that at the same collector area, the liquid water-based system (S-1) shows a higher solar fraction than the air-based systems (S-2) while the primary energy savings of the S-1 resulted in lower values than S-2 at smaller collector areas (< ∼30 m2) but surpasses the S-2 with increasing collector size. The optimal collector tilt for both systems is determined to be 50°, while specific storage volumes corresponding to maximum primary energy savings are estimated to be 100 and 40 L/m2 for S-1 and S-2, respectively.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":"4 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0175130","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This work pertains to the transient modeling and comparative study of active solar thermal space and water heating systems using liquid and air-type solar thermal collectors as the main energy source. The study utilizes TRNSYS to simulate the two systems in the context of Taxila's weather data (located at 33.74°N, 72.83°E), with the goal of meeting peak space and domestic water heating demands of 20 kW and 200 lit/day, respectively. The liquid water-based system (S-1) is primarily composed of a liquid solar collector, thermal storage, an auxiliary heater, connections to the hot water supply, and the space heating load through a water–air heat exchanger. In contrast, the air-based system (S-2), employs a pebble bed storage to store heat extracted from the solar thermal air collector. The heated air is subsequently used directly for space heating and passed through an air–water heat exchanger for water heating. Dynamic simulations of both systems span the entire winter season, and various performance metrics, including solar fraction, primary energy savings, and solar collector thermal efficiency, are computed. The results revealed that at the same collector area, the liquid water-based system (S-1) shows a higher solar fraction than the air-based systems (S-2) while the primary energy savings of the S-1 resulted in lower values than S-2 at smaller collector areas (< ∼30 m2) but surpasses the S-2 with increasing collector size. The optimal collector tilt for both systems is determined to be 50°, while specific storage volumes corresponding to maximum primary energy savings are estimated to be 100 and 40 L/m2 for S-1 and S-2, respectively.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy