Experimental studies on the heat transfer performance of MHP-PV/T enhanced by Reynolds number

Q1 Engineering
Rui Li , Jinping Li , Junjie Zhu , Xuemin Zhang , Xiao Guo , Vojislav Novakovic
{"title":"Experimental studies on the heat transfer performance of MHP-PV/T enhanced by Reynolds number","authors":"Rui Li ,&nbsp;Jinping Li ,&nbsp;Junjie Zhu ,&nbsp;Xuemin Zhang ,&nbsp;Xiao Guo ,&nbsp;Vojislav Novakovic","doi":"10.1016/j.enbenv.2023.11.007","DOIUrl":null,"url":null,"abstract":"<div><div>The photovoltaic/thermal (PV/T) system, as an energy conversion system to generate electricity and heat, has great application potential in northwest zone of ample solar energy resource in China. The working media inside the micro heat pipe (MHP) of previous studies was acetone. Compared to acetone, R141b has better stability and lower solubility. For working fluid as R141b in the MHP, higher Reynolds Number (<em>Re</em>) theoretically means better heat transfer. During the typical winter season, when the inclination of the PV panel was 45°, the average power conversion efficiency (<em>PCE</em>) and thermal conversion efficiency (<em>TCE</em>) can reach 12.8 and 26.4 %. Furthermore, in order to reduce the simulation time and facilitate the research, the study establishes the fitting equation of MHP-PV/T surface temperature based on solar radiation intensity and environmental temperature with an average error of 7.6 %. Furthermore, a three-dimensional mathematical model of MHP-PV/T system was developed and validated with experimental results, investigating the <em>Re</em> of R141b in the MHPs and calculating the related heat transfer coefficient (<em>h</em>) based on <em>Re</em>. The simulation showed that the <em>Re</em> and <em>h</em> at the condensation section of the MHP were bigger than those at the evaporation section. The <em>Re</em> and <em>h</em> increased with the water temperature decrease of airfoil heat exchanger and solar radiation intensity rise. Lastly, when water temperature of airfoil heat exchanger was unchanged, the impact of solar radiation intensity on <em>h</em> was greater than <em>Re</em>. When the solar radiation intensity remained unchanged and the water temperature decreased, <em>Re</em> was the main reason for affecting the change of <em>h</em>. The research results will give a scientific foundation and technical application for the MHP-PV/T, as well as more efficient solar energy applications in the future.</div></div>","PeriodicalId":33659,"journal":{"name":"Energy and Built Environment","volume":"6 2","pages":"Pages 320-331"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666123323001125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The photovoltaic/thermal (PV/T) system, as an energy conversion system to generate electricity and heat, has great application potential in northwest zone of ample solar energy resource in China. The working media inside the micro heat pipe (MHP) of previous studies was acetone. Compared to acetone, R141b has better stability and lower solubility. For working fluid as R141b in the MHP, higher Reynolds Number (Re) theoretically means better heat transfer. During the typical winter season, when the inclination of the PV panel was 45°, the average power conversion efficiency (PCE) and thermal conversion efficiency (TCE) can reach 12.8 and 26.4 %. Furthermore, in order to reduce the simulation time and facilitate the research, the study establishes the fitting equation of MHP-PV/T surface temperature based on solar radiation intensity and environmental temperature with an average error of 7.6 %. Furthermore, a three-dimensional mathematical model of MHP-PV/T system was developed and validated with experimental results, investigating the Re of R141b in the MHPs and calculating the related heat transfer coefficient (h) based on Re. The simulation showed that the Re and h at the condensation section of the MHP were bigger than those at the evaporation section. The Re and h increased with the water temperature decrease of airfoil heat exchanger and solar radiation intensity rise. Lastly, when water temperature of airfoil heat exchanger was unchanged, the impact of solar radiation intensity on h was greater than Re. When the solar radiation intensity remained unchanged and the water temperature decreased, Re was the main reason for affecting the change of h. The research results will give a scientific foundation and technical application for the MHP-PV/T, as well as more efficient solar energy applications in the future.

Abstract Image

通过提高雷诺数和传热系数对 MHP-PV/T 进行实验和传热研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and Built Environment
Energy and Built Environment Engineering-Building and Construction
CiteScore
15.90
自引率
0.00%
发文量
104
审稿时长
49 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信