Q. Cao, Y. Chen, K. Zhang, X. Zhang, Z. Cheng, B. Wen
{"title":"Design approach of thrust-matched rotor for basin model tests of floating straight-bladed vertical axis wind turbines","authors":"Q. Cao, Y. Chen, K. Zhang, X. Zhang, Z. Cheng, B. Wen","doi":"10.1063/5.0176064","DOIUrl":null,"url":null,"abstract":"Rotor redesign approaches have been widely proposed to solve the thrust mismatch issue caused by scaling effects for basin model tests of horizontal axis floating wind turbines (FWTs). However, limited basin model tests utilized the thrust-matched rotor (TMR) to accurately evaluate the aerodynamic loads applying to the vertical axis FWTs. This paper described the detailed design approach of the TMR of floating straight-bladed vertical axis wind turbines (VAWTs) with a rated power of 5.3 MW. First, the AG455 airfoil was selected to replace the NACA0018 airfoil. AG455 airfoil can show a larger lift coefficient and a smaller drag coefficient at low Reynolds number. On this basis, the load distribution match algorithm was used to assign the blade pitch angle and chord length at each section of the blade. This method takes the spanwise load and load change rate of model-scaled blade and full-scaled blade as the constraint conditions. By adopting this method, the rotor thrust can be tailored to match the prototype values across a wide range of tip speed ratios. This design approach proves advantageous in assessing the aerodynamic performance of VAWTs under varying inflow wind speeds and unsteady wind conditions. The redesigned TMR model under low Reynolds number can meet Froude similarity criterion, which is helpful to improve the accuracy of vertical axis FWT model tests in the wave basin.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":"43 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0176064","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Rotor redesign approaches have been widely proposed to solve the thrust mismatch issue caused by scaling effects for basin model tests of horizontal axis floating wind turbines (FWTs). However, limited basin model tests utilized the thrust-matched rotor (TMR) to accurately evaluate the aerodynamic loads applying to the vertical axis FWTs. This paper described the detailed design approach of the TMR of floating straight-bladed vertical axis wind turbines (VAWTs) with a rated power of 5.3 MW. First, the AG455 airfoil was selected to replace the NACA0018 airfoil. AG455 airfoil can show a larger lift coefficient and a smaller drag coefficient at low Reynolds number. On this basis, the load distribution match algorithm was used to assign the blade pitch angle and chord length at each section of the blade. This method takes the spanwise load and load change rate of model-scaled blade and full-scaled blade as the constraint conditions. By adopting this method, the rotor thrust can be tailored to match the prototype values across a wide range of tip speed ratios. This design approach proves advantageous in assessing the aerodynamic performance of VAWTs under varying inflow wind speeds and unsteady wind conditions. The redesigned TMR model under low Reynolds number can meet Froude similarity criterion, which is helpful to improve the accuracy of vertical axis FWT model tests in the wave basin.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy