{"title":"Optimization of wind and solar energy storage system capacity configuration based on the Parzen window estimation method","authors":"Qihui Yu, Shengyu Gao, Guoxin Sun, Ripeng Qin","doi":"10.1063/5.0172720","DOIUrl":null,"url":null,"abstract":"Compressed air energy storage (CAES) effectively reduces wind and solar power curtailment due to randomness. However, inaccurate daily data and improper storage capacity configuration impact CAES development. This study uses the Parzen window estimation method to extract features from historical data, obtaining distributions of typical weekly wind power, solar power, and load. These distributions are compared to Weibull and Beta distributions. The wind–solar energy storage system's capacity configuration is optimized using a genetic algorithm to maximize profit. Different methods are compared in island/grid-connected modes using evaluation metrics to verify the accuracy of the Parzen window estimation method. The results show that it surpasses parameter estimation for real-time series-based configuration. Under grid-connected mode, rated power configurations are 1107 MW for wind, 346 MW for solar, and 290 MW for CAES. The CAES system has a rated capacity of 2320 MW·h, meeting average hourly power demand of 699.26 MW. It saves $6.55 million per week in electricity costs, with a maximum weekly profit of $0.61 million. Payback period for system investment is 5.6 years, excluding penalty costs.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":"128 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0172720","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Compressed air energy storage (CAES) effectively reduces wind and solar power curtailment due to randomness. However, inaccurate daily data and improper storage capacity configuration impact CAES development. This study uses the Parzen window estimation method to extract features from historical data, obtaining distributions of typical weekly wind power, solar power, and load. These distributions are compared to Weibull and Beta distributions. The wind–solar energy storage system's capacity configuration is optimized using a genetic algorithm to maximize profit. Different methods are compared in island/grid-connected modes using evaluation metrics to verify the accuracy of the Parzen window estimation method. The results show that it surpasses parameter estimation for real-time series-based configuration. Under grid-connected mode, rated power configurations are 1107 MW for wind, 346 MW for solar, and 290 MW for CAES. The CAES system has a rated capacity of 2320 MW·h, meeting average hourly power demand of 699.26 MW. It saves $6.55 million per week in electricity costs, with a maximum weekly profit of $0.61 million. Payback period for system investment is 5.6 years, excluding penalty costs.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy