On the solutions of nonlocal 1-Laplacian equation with $ L^1 $-data

IF 1.1 3区 数学 Q1 MATHEMATICS
Dingding Li, Chao Zhang
{"title":"On the solutions of nonlocal 1-Laplacian equation with $ L^1 $-data","authors":"Dingding Li, Chao Zhang","doi":"10.3934/dcds.2023148","DOIUrl":null,"url":null,"abstract":"We study the solutions to a nonlocal 1-Laplacian equation given by $$ 2\\text{P.V.}\\int_{\\mathbb{R}^N}\\frac{u(x)-u(y)}{|u(x)-u(y)|} \\frac{dy}{|x-y|^{N+s}}=f(x) \\quad \\textmd{for } x\\in \\Omega, $$ with Dirichlet boundary condition $u(x)=0$ in $\\mathbb R^N\\backslash \\Omega$ and nonnegative $L^1$-data. By investigating the asymptotic behaviour of renormalized solutions $u_p$ to the nonlocal $p$-Laplacian equations as $p$ goes to $1^+$, we introduce a suitable definition of solutions and prove that the limit function $u$ of $\\{u_p\\}$ is a solution of the nonlocal $1$-Laplacian equation above.","PeriodicalId":51007,"journal":{"name":"Discrete and Continuous Dynamical Systems","volume":"45 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/dcds.2023148","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the solutions to a nonlocal 1-Laplacian equation given by $$ 2\text{P.V.}\int_{\mathbb{R}^N}\frac{u(x)-u(y)}{|u(x)-u(y)|} \frac{dy}{|x-y|^{N+s}}=f(x) \quad \textmd{for } x\in \Omega, $$ with Dirichlet boundary condition $u(x)=0$ in $\mathbb R^N\backslash \Omega$ and nonnegative $L^1$-data. By investigating the asymptotic behaviour of renormalized solutions $u_p$ to the nonlocal $p$-Laplacian equations as $p$ goes to $1^+$, we introduce a suitable definition of solutions and prove that the limit function $u$ of $\{u_p\}$ is a solution of the nonlocal $1$-Laplacian equation above.
关于有 $ L^1 $ 数据的非局部 1-拉普拉斯方程的解
我们研究了由 $$ 2\text{P.V.}\int_{mathbb{R}^N}\frac{u(x)-u(y)}{|u(x)-u(y)|} 所给出的非局部 1 拉普拉斯方程的解。\frac{dy}{|x-y|^{N+s}}=f(x) \quad \textmd{for } x\in \Omega, $$ 在 $\mathbb R^N\backslash \Omega$ 中具有德里赫特边界条件 $u(x)=0$ 和非负 $L^1$ 数据。通过研究非局部 $p$ 拉普拉斯方程的重正化解 $u_p$ 在 $p$ 达到 1^+$ 时的渐近行为,我们引入了一个合适的解的定义,并证明了 $\{u_p\}$ 的极限函数 $u$ 是上述非局部 1$ 拉普拉斯方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
175
审稿时长
6 months
期刊介绍: DCDS, series A includes peer-reviewed original papers and invited expository papers on the theory and methods of analysis, differential equations and dynamical systems. This journal is committed to recording important new results in its field and maintains the highest standards of innovation and quality. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信