Comparing Different Oversampling Methods in Predicting Multi-Class Educational Datasets Using Machine Learning Techniques

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Muhammad Arham Tariq, Allah Bux Sargano, Muhammad Aksam Iftikhar, Z. Habib
{"title":"Comparing Different Oversampling Methods in Predicting Multi-Class Educational Datasets Using Machine Learning Techniques","authors":"Muhammad Arham Tariq, Allah Bux Sargano, Muhammad Aksam Iftikhar, Z. Habib","doi":"10.2478/cait-2023-0044","DOIUrl":null,"url":null,"abstract":"Abstract Predicting students’ academic performance is a critical research area, yet imbalanced educational datasets, characterized by unequal academic-level representation, present challenges for classifiers. While prior research has addressed the imbalance in binary-class datasets, this study focuses on multi-class datasets. A comparison of ten resampling methods (SMOTE, Adasyn, Distance SMOTE, BorderLineSMOTE, KmeansSMOTE, SVMSMOTE, LN SMOTE, MWSMOTE, Safe Level SMOTE, and SMOTETomek) is conducted alongside nine classification models: K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Support Vector Machine (SVM), Logistic Regression (LR), Extra Tree (ET), Random Forest (RT), Extreme Gradient Boosting (XGB), and Ada Boost (AdaB). Following a rigorous evaluation, including hyperparameter tuning and 10 fold cross-validations, KNN with SmoteTomek attains the highest accuracy of 83.7%, as demonstrated through an ablation study. These results emphasize SMOTETomek’s effectiveness in mitigating class imbalance in educational datasets and highlight KNN’s potential as an educational data mining classifier.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":"6 1","pages":"199 - 212"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2023-0044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Predicting students’ academic performance is a critical research area, yet imbalanced educational datasets, characterized by unequal academic-level representation, present challenges for classifiers. While prior research has addressed the imbalance in binary-class datasets, this study focuses on multi-class datasets. A comparison of ten resampling methods (SMOTE, Adasyn, Distance SMOTE, BorderLineSMOTE, KmeansSMOTE, SVMSMOTE, LN SMOTE, MWSMOTE, Safe Level SMOTE, and SMOTETomek) is conducted alongside nine classification models: K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Support Vector Machine (SVM), Logistic Regression (LR), Extra Tree (ET), Random Forest (RT), Extreme Gradient Boosting (XGB), and Ada Boost (AdaB). Following a rigorous evaluation, including hyperparameter tuning and 10 fold cross-validations, KNN with SmoteTomek attains the highest accuracy of 83.7%, as demonstrated through an ablation study. These results emphasize SMOTETomek’s effectiveness in mitigating class imbalance in educational datasets and highlight KNN’s potential as an educational data mining classifier.
比较使用机器学习技术预测多类教育数据集的不同过度取样方法
摘要 预测学生的学业成绩是一个重要的研究领域,然而以不平等的学业水平代表性为特征的不平衡教育数据集给分类器带来了挑战。之前的研究已经解决了二元类数据集的不平衡问题,而本研究则侧重于多类数据集。本研究比较了十种重采样方法(SMOTE、Adasyn、Distance SMOTE、BorderLineSMOTE、KmeansSMOTE、SVMSMOTE、LN SMOTE、MWSMOTE、Safe Level SMOTE 和 SMOTETomek)和九种分类模型:K-Nearest Neighbors (KNN)、Linear Discriminant Analysis (LDA)、Qadratic Discriminant Analysis (QDA)、Support Vector Machine (SVM)、Logistic Regression (LR)、Extra Tree (ET)、Random Forest (RT)、Extreme Gradient Boosting (XGB) 和 Ada Boost (AdaB)。经过严格的评估,包括超参数调整和 10 倍交叉验证,使用 SmoteTomek 的 KNN 获得了 83.7% 的最高准确率,这在一项消融研究中得到了证明。这些结果表明,SMOTETomek 能有效缓解教育数据集中的类不平衡问题,并凸显了 KNN 作为教育数据挖掘分类器的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cybernetics and Information Technologies
Cybernetics and Information Technologies COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.20
自引率
25.00%
发文量
35
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信