IBPs and differential equations in parameter space

Daniele Artico, L. Magnea
{"title":"IBPs and differential equations in parameter space","authors":"Daniele Artico, L. Magnea","doi":"10.22323/1.432.0058","DOIUrl":null,"url":null,"abstract":"We present a projective framework for the construction of Integration by Parts (IBP) identities and differential equations for Feynman integrals, working in Feynman-parameter space. This framework originates with very early results which emerged long before modern techniques for loop calculations were developed. Adapting and generalising these results to the modern language, we use simple tools of projective geometry to generate sets of IBP identities and differential equations in parameter space, with a technique applicable to any loop order. We test the viability of the method on simple diagrams at one and two loops, providing a unified viewpoint on several existing results.","PeriodicalId":111655,"journal":{"name":"Proceedings of 16th International Symposium on Radiative Corrections: Applications of Quantum Field Theory to Phenomenology — PoS(RADCOR2023)","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 16th International Symposium on Radiative Corrections: Applications of Quantum Field Theory to Phenomenology — PoS(RADCOR2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.432.0058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a projective framework for the construction of Integration by Parts (IBP) identities and differential equations for Feynman integrals, working in Feynman-parameter space. This framework originates with very early results which emerged long before modern techniques for loop calculations were developed. Adapting and generalising these results to the modern language, we use simple tools of projective geometry to generate sets of IBP identities and differential equations in parameter space, with a technique applicable to any loop order. We test the viability of the method on simple diagrams at one and two loops, providing a unified viewpoint on several existing results.
参数空间中的 IBP 和微分方程
我们提出了一个在费曼参数空间中构建费曼积分的分部积分(IBP)等式和微分方程的投影框架。这一框架源于早在现代环路计算技术发展之前就已出现的早期结果。我们将这些结果改编并推广到现代语言中,使用投影几何的简单工具生成参数空间中的 IBP 同式集和微分方程集,这种技术适用于任何循环阶数。我们在一环和两环的简单图表上测试了该方法的可行性,为现有的几个结果提供了统一的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信