Transforming Gambling Harm Reduction in Youth: Leveraging AI Language Models for Personalized Intervention and Prevention

Iris-Panagiota Efthymiou, Symeon Sidiropoulos, K. Diareme, Theoharris-William Efthymiou–Egleton
{"title":"Transforming Gambling Harm Reduction in Youth: Leveraging AI Language Models for Personalized Intervention and Prevention","authors":"Iris-Panagiota Efthymiou, Symeon Sidiropoulos, K. Diareme, Theoharris-William Efthymiou–Egleton","doi":"10.12681/jpentai.35821","DOIUrl":null,"url":null,"abstract":"This article highlights the pressing issue of youth gambling addiction, with up to 20% of young individuals engaging in gambling activities, particularly online. With 6-9% of US youth facing gambling problems. This study explores how Large Language Models (LLMs) can enhance harm reduction by providing personalized support, early intervention, and education while respecting privacy. The article draws insights from a review of 45 studies. It was found that youth gambling addiction is a global issue exacerbated by technology and the pandemic. LLMs like GPT-4 offer promise in harm reduction by providing information and support.  LLMs can provide vital insights, educational materials, and support for responsible gambling. The article acknowledges potential LLM risks and emphasizes a cautious approach. Recommendations include personalized interventions, online pop-ups, enhanced LLMs, ongoing research, multi-stakeholder collaboration, etc.","PeriodicalId":436908,"journal":{"name":"Journal of Politics and Ethics in New Technologies and AI","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Politics and Ethics in New Technologies and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12681/jpentai.35821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article highlights the pressing issue of youth gambling addiction, with up to 20% of young individuals engaging in gambling activities, particularly online. With 6-9% of US youth facing gambling problems. This study explores how Large Language Models (LLMs) can enhance harm reduction by providing personalized support, early intervention, and education while respecting privacy. The article draws insights from a review of 45 studies. It was found that youth gambling addiction is a global issue exacerbated by technology and the pandemic. LLMs like GPT-4 offer promise in harm reduction by providing information and support.  LLMs can provide vital insights, educational materials, and support for responsible gambling. The article acknowledges potential LLM risks and emphasizes a cautious approach. Recommendations include personalized interventions, online pop-ups, enhanced LLMs, ongoing research, multi-stakeholder collaboration, etc.
减少青少年赌博危害的变革:利用人工智能语言模型进行个性化干预和预防
这篇文章强调了青少年赌博成瘾这一紧迫问题,高达 20% 的青少年参与赌博活动,尤其是网络赌博。美国有 6-9% 的青少年面临赌博问题。本研究探讨了大型语言模型(LLM)如何通过提供个性化支持、早期干预和教育,在尊重隐私的同时加强减少危害的工作。文章从对 45 项研究的回顾中汲取了启示。研究发现,青少年赌博成瘾是一个全球性问题,因技术和流行病而加剧。像 GPT-4 这样的 LLM 通过提供信息和支持,为减少危害带来了希望。 LLM 可以为负责任的赌博提供重要的见解、教育材料和支持。文章承认 LLM 潜在的风险,并强调要谨慎行事。建议包括个性化干预、在线弹出式窗口、增强型 LLMs、持续研究、多方利益相关者合作等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信