On the Density of Primes of the form X^2+c

Marc Wolf, Franccois Wolf
{"title":"On the Density of Primes of the form X^2+c","authors":"Marc Wolf, Franccois Wolf","doi":"10.14738/tecs.116.15890","DOIUrl":null,"url":null,"abstract":"We present a method for finding large fixed-size primes of the form $X^2+c$. We study the density of primes on the sets $E_c = \\{N(X,c)=X^2+c,\\ X \\in (2\\mathbb{Z}+(c-1))\\}$, $c \\in \\mathbb{N}^*$. We describe an algorithm for generating values of $c$ such that a given prime $p$ is the minimum of the union of prime divisors of all elements in $E_c$. We also present quadratic forms generating divisors of Ec and study the prime divisors of its terms. This paper uses the results of Dirichlet's arithmetic progression theorem [1] and the article [6] to rewrite a conjecture of Shanks [2] on the density of primes in $E_c$. Finally, based on these results, we discuss the heuristics of large primes occurrences in the research set of our algorithm.","PeriodicalId":119801,"journal":{"name":"Transactions on Machine Learning and Artificial Intelligence","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Machine Learning and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14738/tecs.116.15890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a method for finding large fixed-size primes of the form $X^2+c$. We study the density of primes on the sets $E_c = \{N(X,c)=X^2+c,\ X \in (2\mathbb{Z}+(c-1))\}$, $c \in \mathbb{N}^*$. We describe an algorithm for generating values of $c$ such that a given prime $p$ is the minimum of the union of prime divisors of all elements in $E_c$. We also present quadratic forms generating divisors of Ec and study the prime divisors of its terms. This paper uses the results of Dirichlet's arithmetic progression theorem [1] and the article [6] to rewrite a conjecture of Shanks [2] on the density of primes in $E_c$. Finally, based on these results, we discuss the heuristics of large primes occurrences in the research set of our algorithm.
关于 X^2+c 形式的素数密度
我们提出了一种寻找 $X^2+c$ 形式的固定大小大素数的方法。我们研究了 $E_c = \{N(X,c)=X^2+c,\X \in (2\mathbb{Z}+(c-1))\}$, $c \in \mathbb{N}^*$集合上的素数密度。我们描述了一种生成 $c$ 值的算法,这样一个给定的素数 $p$ 就是 $E_c$ 中所有元素的素除之和的最小值。我们还提出了生成 Ec 除数的二次型,并研究了其项的素除数。本文利用狄利克特算术级数定理 [1] 和文章 [6] 的结果,重写了香克斯 [2] 关于 $E_c$ 中素数密度的猜想。最后,基于这些结果,我们讨论了我们算法研究集中大素数出现的启发式方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信