B. Lehmer, K. Garofali, B. Binder, F. Fornasini, N. Vulic, A. Zezas, A. Hornschemeier, M. Lazzarini, Hannah Moon, T. Venters, D. Wik, M. Yukita, M. Bachetti, Javier A. Garc'ia, B. Grefenstette, K. Madsen, K. Mori, D. Stern
{"title":"The high energy X-ray probe: resolved X-ray populations in extragalactic environments","authors":"B. Lehmer, K. Garofali, B. Binder, F. Fornasini, N. Vulic, A. Zezas, A. Hornschemeier, M. Lazzarini, Hannah Moon, T. Venters, D. Wik, M. Yukita, M. Bachetti, Javier A. Garc'ia, B. Grefenstette, K. Madsen, K. Mori, D. Stern","doi":"10.3389/fspas.2023.1293918","DOIUrl":null,"url":null,"abstract":"We construct simulated galaxy data sets based on the High Energy X-ray Probe (HEX-P) mission concept to demonstrate the significant advances in galaxy science that will be yielded by the HEX-P observatory. The combination of high spatial resolution imaging (<20 arcsec FWHM), broad spectral coverage (0.2–80 keV), and sensitivity superior to current facilities (e.g., XMM-Newton and NuSTAR) will enable HEX-P to detect hard (4–25 keV) X-ray emission from resolved point-source populations within ∼800 galaxies and integrated emission from ∼6,000 galaxies out to 100 Mpc. These galaxies cover wide ranges of galaxy types (e.g., normal, starburst, and passive galaxies) and properties (e.g., metallicities and star-formation histories). In such galaxies, HEX-P will: 1) provide unique information about X-ray binary populations, including accretor demographics (black hole and neutron stars), distributions of accretion states and state transition cadences; 2) place order-of-magnitude more stringent constraints on inverse Compton emission associated with particle acceleration in starburst environments; and 3) put into clear context the contributions from X-ray emitting populations to both ionizing the surrounding interstellar medium in low-metallicity galaxies and heating the intergalactic medium in the z > 8 Universe.","PeriodicalId":507437,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Astronomy and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fspas.2023.1293918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We construct simulated galaxy data sets based on the High Energy X-ray Probe (HEX-P) mission concept to demonstrate the significant advances in galaxy science that will be yielded by the HEX-P observatory. The combination of high spatial resolution imaging (<20 arcsec FWHM), broad spectral coverage (0.2–80 keV), and sensitivity superior to current facilities (e.g., XMM-Newton and NuSTAR) will enable HEX-P to detect hard (4–25 keV) X-ray emission from resolved point-source populations within ∼800 galaxies and integrated emission from ∼6,000 galaxies out to 100 Mpc. These galaxies cover wide ranges of galaxy types (e.g., normal, starburst, and passive galaxies) and properties (e.g., metallicities and star-formation histories). In such galaxies, HEX-P will: 1) provide unique information about X-ray binary populations, including accretor demographics (black hole and neutron stars), distributions of accretion states and state transition cadences; 2) place order-of-magnitude more stringent constraints on inverse Compton emission associated with particle acceleration in starburst environments; and 3) put into clear context the contributions from X-ray emitting populations to both ionizing the surrounding interstellar medium in low-metallicity galaxies and heating the intergalactic medium in the z > 8 Universe.