A Comprehensive Review on Monkeypox Skin Lesion Recognition through Deep Learning

Dhwani Jagani, S. Degadwala
{"title":"A Comprehensive Review on Monkeypox Skin Lesion Recognition through Deep Learning","authors":"Dhwani Jagani, S. Degadwala","doi":"10.32628/cseit2361045","DOIUrl":null,"url":null,"abstract":"This comprehensive review delves into the emerging field of Monkeypox skin lesion recognition using deep learning techniques. Monkeypox, a rare viral disease with symptoms resembling smallpox, presents a diagnostic challenge, particularly in resource-limited regions. The paper explores the recent advancements in deep learning methodologies applied to the automated identification and classification of Monkeypox skin lesions, offering a detailed analysis of various neural network architectures, image preprocessing techniques, and dataset considerations. The review highlights the potential of deep learning models in enhancing the accuracy and efficiency of Monkeypox diagnosis, paving the way for improved early detection and timely intervention in affected populations. Additionally, it discusses challenges and future directions in this domain, emphasizing the need for robust and interpretable models to facilitate widespread adoption in clinical settings.","PeriodicalId":313456,"journal":{"name":"International Journal of Scientific Research in Computer Science, Engineering and Information Technology","volume":"124 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Computer Science, Engineering and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/cseit2361045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This comprehensive review delves into the emerging field of Monkeypox skin lesion recognition using deep learning techniques. Monkeypox, a rare viral disease with symptoms resembling smallpox, presents a diagnostic challenge, particularly in resource-limited regions. The paper explores the recent advancements in deep learning methodologies applied to the automated identification and classification of Monkeypox skin lesions, offering a detailed analysis of various neural network architectures, image preprocessing techniques, and dataset considerations. The review highlights the potential of deep learning models in enhancing the accuracy and efficiency of Monkeypox diagnosis, paving the way for improved early detection and timely intervention in affected populations. Additionally, it discusses challenges and future directions in this domain, emphasizing the need for robust and interpretable models to facilitate widespread adoption in clinical settings.
通过深度学习识别猴痘皮损的综述
这篇综合评论深入探讨了利用深度学习技术识别猴痘皮损的新兴领域。猴痘是一种罕见的病毒性疾病,症状类似天花,给诊断带来了挑战,尤其是在资源有限的地区。本文探讨了应用于猴痘皮损自动识别和分类的深度学习方法的最新进展,详细分析了各种神经网络架构、图像预处理技术和数据集注意事项。综述强调了深度学习模型在提高猴痘诊断的准确性和效率方面的潜力,为改进早期检测和及时干预受影响人群铺平了道路。此外,它还讨论了这一领域的挑战和未来方向,强调需要建立稳健、可解释的模型,以促进在临床环境中的广泛采用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信