Scaling the “Memory Wall” for Multi-Dimensional Seismic Processing with Algebraic Compression on Cerebras CS-2 Systems

H. Ltaief, Yuxi Hong, Leighton Wilson, Mathias Jacquelin, Matteo Ravasi, David E. Keyes
{"title":"Scaling the “Memory Wall” for Multi-Dimensional Seismic Processing with Algebraic Compression on Cerebras CS-2 Systems","authors":"H. Ltaief, Yuxi Hong, Leighton Wilson, Mathias Jacquelin, Matteo Ravasi, David E. Keyes","doi":"10.1145/3581784.3627042","DOIUrl":null,"url":null,"abstract":"We exploit the high memory bandwidth of AI-customized Cerebras CS-2 systems for seismic processing. By leveraging low-rank matrix approximation, we fit memory-hungry seismic applications onto memory-austere SRAM wafer-scale hardware, thus addressing a challenge arising in many wave-equation-based algorithms that rely on Multi-Dimensional Convolution (MDC) operators. Exploiting sparsity inherent in seismic data in the frequency domain, we implement embarrassingly parallel tile low-rank matrix-vector multiplications (TLR-MVM), which account for most of the elapsed time in MDC operations, to successfully solve the Multi-Dimensional Deconvolution (MDD) inverse problem. By reducing memory footprint along with arithmetic complexity, we fit a standard seismic benchmark dataset into the small local memories of Cerebras processing elements. Deploying TLR-MVM execution onto 48 CS-2 systems in support of MDD gives a sustained memory bandwidth of 92.58PB/s on 35, 784, 000 processing elements, a significant milestone that highlights the capabilities of AI-customized architectures to enable a new generation of seismic algorithms that will empower multiple technologies of our low-carbon future.","PeriodicalId":124077,"journal":{"name":"Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"51 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581784.3627042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We exploit the high memory bandwidth of AI-customized Cerebras CS-2 systems for seismic processing. By leveraging low-rank matrix approximation, we fit memory-hungry seismic applications onto memory-austere SRAM wafer-scale hardware, thus addressing a challenge arising in many wave-equation-based algorithms that rely on Multi-Dimensional Convolution (MDC) operators. Exploiting sparsity inherent in seismic data in the frequency domain, we implement embarrassingly parallel tile low-rank matrix-vector multiplications (TLR-MVM), which account for most of the elapsed time in MDC operations, to successfully solve the Multi-Dimensional Deconvolution (MDD) inverse problem. By reducing memory footprint along with arithmetic complexity, we fit a standard seismic benchmark dataset into the small local memories of Cerebras processing elements. Deploying TLR-MVM execution onto 48 CS-2 systems in support of MDD gives a sustained memory bandwidth of 92.58PB/s on 35, 784, 000 processing elements, a significant milestone that highlights the capabilities of AI-customized architectures to enable a new generation of seismic algorithms that will empower multiple technologies of our low-carbon future.
在 Cerebras CS-2 系统上利用代数压缩技术扩展多维地震处理的 "记忆墙
我们利用人工智能定制 Cerebras CS-2 系统的高内存带宽进行地震处理。通过利用低秩矩阵近似,我们在内存稀缺的 SRAM 晶圆级硬件上实现了对内存要求极高的地震应用,从而解决了许多依赖于多维卷积(MDC)算子的基于波方程的算法所面临的挑战。利用频域地震数据固有的稀疏性,我们实现了令人尴尬的并行瓦片低秩矩阵向量乘法(TLR-MVM),成功解决了多维解卷积(MDD)逆问题。通过减少内存占用和算术复杂度,我们将标准地震基准数据集放入了 Cerebras 处理元件的小型本地内存中。在 48 个 CS-2 系统上部署 TLR-MVM 执行以支持 MDD,可在 35,784,000 个处理单元上提供 92.58PB/s 的持续内存带宽,这是一个重要的里程碑,彰显了人工智能定制架构的能力,可支持新一代地震算法,为我们低碳未来的多种技术赋能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信