Piksellerden Paragraflara: Inception v3 ve Dikkat Mekanizmalarını Kullanarak Gelişmiş Görüntüden Metin Üretimi Keşfetme

Zeynep Karaca, Bihter Daş
{"title":"Piksellerden Paragraflara: Inception v3 ve Dikkat Mekanizmalarını Kullanarak Gelişmiş Görüntüden Metin Üretimi Keşfetme","authors":"Zeynep Karaca, Bihter Daş","doi":"10.24012/dumf.1340656","DOIUrl":null,"url":null,"abstract":"Processing visual data and converting it into text plays a crucial role in fields like information retrieval and data analysis in the digital world. At this juncture, the \"image-to-text\" transformation, which bridges the gap between visual and textual data, has garnered significant interest from researchers and industry experts. This article presents a study on generating text from images. The study aims to measure the contribution of adding an attention mechanism to the encoder-decoder-based Inception v3 deep learning architecture for image-to-text generation. In the model, the Inception v3 model is trained on the Flickr8k dataset to extract image features. The encoder-decoder structure with an attention mechanism is employed for next-word prediction, and the model is trained on the train images of the Flickr8k dataset for performance evaluation. Experimental results demonstrate the model's satisfactory ability to accurately perceive objects in images.","PeriodicalId":158576,"journal":{"name":"DÜMF Mühendislik Dergisi","volume":"66 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DÜMF Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24012/dumf.1340656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Processing visual data and converting it into text plays a crucial role in fields like information retrieval and data analysis in the digital world. At this juncture, the "image-to-text" transformation, which bridges the gap between visual and textual data, has garnered significant interest from researchers and industry experts. This article presents a study on generating text from images. The study aims to measure the contribution of adding an attention mechanism to the encoder-decoder-based Inception v3 deep learning architecture for image-to-text generation. In the model, the Inception v3 model is trained on the Flickr8k dataset to extract image features. The encoder-decoder structure with an attention mechanism is employed for next-word prediction, and the model is trained on the train images of the Flickr8k dataset for performance evaluation. Experimental results demonstrate the model's satisfactory ability to accurately perceive objects in images.
从像素到段落:利用 Inception v3 和注意机制探索从图像到文本的高级生成方法
处理视觉数据并将其转换为文本,在数字世界的信息检索和数据分析等领域发挥着至关重要的作用。此时,在视觉数据和文本数据之间架起桥梁的 "图像到文本 "转换引起了研究人员和行业专家的极大兴趣。本文介绍了一项关于从图像生成文本的研究。该研究旨在衡量在基于编码器-解码器的 Inception v3 深度学习架构中添加注意力机制对图像到文本生成的贡献。在该模型中,Inception v3 模型在 Flickr8k 数据集上进行训练,以提取图像特征。该模型在 Flickr8k 数据集的训练图像上进行训练,以评估性能。实验结果表明,该模型准确感知图像中物体的能力令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信