Big Data Assimilation: Real-time 30-second-refresh Heavy Rain Forecast Using Fugaku During Tokyo Olympics and Paralympics

T. Miyoshi, A. Amemiya, S. Otsuka, Y. Maejima, James Taylor, T. Honda, Hirofumi Tomita, S. Nishizawa, Kenta Sueki, T. Yamaura, Yutaka Ishikawa, Shinsuke Satoh, T. Ushio, K. Koike, Atsuya Uno
{"title":"Big Data Assimilation: Real-time 30-second-refresh Heavy Rain Forecast Using Fugaku During Tokyo Olympics and Paralympics","authors":"T. Miyoshi, A. Amemiya, S. Otsuka, Y. Maejima, James Taylor, T. Honda, Hirofumi Tomita, S. Nishizawa, Kenta Sueki, T. Yamaura, Yutaka Ishikawa, Shinsuke Satoh, T. Ushio, K. Koike, Atsuya Uno","doi":"10.1145/3581784.3627047","DOIUrl":null,"url":null,"abstract":"Real-time 30-second-refresh numerical weather prediction (NWP) was performed with exclusive use of 11,580 nodes (~7%) of supercomputer Fugaku during Tokyo Olympics and Paralympics in 2021. Total 75,248 forecasts were disseminated in the 1-month period mostly stably with time-to-solution less than 3 minutes for 30-minute forecast. Japan's Big Data Assimilation (BDA) project developed the novel NWP system for precise prediction of hazardous rains toward solving the global climate crisis. Compared with typical 1-hour-refresh systems, the BDA system offered two orders of magnitude increase in problem size and revealed the effectiveness of 30-second refresh for highly nonlinear, rapidly evolving convective rains. To achieve the required time-to-solution for real-time 30-second refresh with high accuracy, the core BDA software incorporated single precision and enhanced parallel I/O with properly selected configurations of 1000 ensemble members and 500-m-mesh weather model. The massively parallel, I/O intensive real-time BDA computation demonstrated a promising future direction.","PeriodicalId":124077,"journal":{"name":"Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"14 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581784.3627047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Real-time 30-second-refresh numerical weather prediction (NWP) was performed with exclusive use of 11,580 nodes (~7%) of supercomputer Fugaku during Tokyo Olympics and Paralympics in 2021. Total 75,248 forecasts were disseminated in the 1-month period mostly stably with time-to-solution less than 3 minutes for 30-minute forecast. Japan's Big Data Assimilation (BDA) project developed the novel NWP system for precise prediction of hazardous rains toward solving the global climate crisis. Compared with typical 1-hour-refresh systems, the BDA system offered two orders of magnitude increase in problem size and revealed the effectiveness of 30-second refresh for highly nonlinear, rapidly evolving convective rains. To achieve the required time-to-solution for real-time 30-second refresh with high accuracy, the core BDA software incorporated single precision and enhanced parallel I/O with properly selected configurations of 1000 ensemble members and 500-m-mesh weather model. The massively parallel, I/O intensive real-time BDA computation demonstrated a promising future direction.
大数据同化:东京奥运会和残奥会期间使用 Fugaku 进行 30 秒刷新的实时暴雨预报
在 2021 年东京奥运会和残奥会期间,独家使用超级计算机 Fugaku 的 11,580 个节点(约占 7%)进行了 30 秒刷新的实时数值天气预报(NWP)。在为期 1 个月的时间里,共发布了 75,248 次预报,大部分预报都很稳定,30 分钟的预报到解决的时间不到 3 分钟。日本的大数据同化(BDA)项目开发了新型 NWP 系统,用于精确预测危险降雨,以解决全球气候危机。与典型的 1 小时刷新系统相比,BDA 系统的问题规模增加了两个数量级,并揭示了 30 秒刷新对高度非线性、快速演变的对流雨的有效性。为了达到 30 秒实时刷新所需的高精度解决时间,BDA 核心软件采用了单精度和增强型并行 I/O,并适当选择了 1000 个集合成员和 500 网格天气模型的配置。大规模并行、I/O 密集型实时 BDA 计算展示了一个充满希望的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信