Sambit Das, Bikash Kanungo, Vishal Subramanian, Gourab Panigrahi, P. Motamarri, David M. Rogers, Paul M. Zimmerman, V. Gavini
{"title":"Large-Scale Materials Modeling at Quantum Accuracy: Ab Initio Simulations of Quasicrystals and Interacting Extended Defects in Metallic Alloys","authors":"Sambit Das, Bikash Kanungo, Vishal Subramanian, Gourab Panigrahi, P. Motamarri, David M. Rogers, Paul M. Zimmerman, V. Gavini","doi":"10.1145/3581784.3627037","DOIUrl":null,"url":null,"abstract":"Ab initio electronic-structure has remained dichotomous between achievable accuracy and length-scale. Quantum many-body (QMB) methods realize quantum accuracy but fail to scale. Density functional theory (DFT) scales favorably but remains far from quantum accuracy. We present a framework that breaks this dichotomy by use of three interconnected modules: (i) invDFT: a methodological advance in inverse DFT linking QMB methods to DFT; (ii) MLXC: a machine-learned density functional trained with invDFT data, commensurate with quantum accuracy; (iii) DFT-FE-MLXC: an adaptive higher-order spectral finite-element (FE) based DFT implementation that integrates MLXC with efficient solver strategies and HPC innovations in FE-specific dense linear algebra, mixed-precision algorithms, and asynchronous compute-communication. We demonstrate a paradigm shift in DFT that not only provides an accuracy commensurate with QMB methods in ground-state energies, but also attains an unprecedented performance of 659.7 PFLOPS (43.1% peak FP64 performance) on 619,124 electrons using 8,000 GPU nodes of Frontier supercomputer.","PeriodicalId":124077,"journal":{"name":"Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581784.3627037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ab initio electronic-structure has remained dichotomous between achievable accuracy and length-scale. Quantum many-body (QMB) methods realize quantum accuracy but fail to scale. Density functional theory (DFT) scales favorably but remains far from quantum accuracy. We present a framework that breaks this dichotomy by use of three interconnected modules: (i) invDFT: a methodological advance in inverse DFT linking QMB methods to DFT; (ii) MLXC: a machine-learned density functional trained with invDFT data, commensurate with quantum accuracy; (iii) DFT-FE-MLXC: an adaptive higher-order spectral finite-element (FE) based DFT implementation that integrates MLXC with efficient solver strategies and HPC innovations in FE-specific dense linear algebra, mixed-precision algorithms, and asynchronous compute-communication. We demonstrate a paradigm shift in DFT that not only provides an accuracy commensurate with QMB methods in ground-state energies, but also attains an unprecedented performance of 659.7 PFLOPS (43.1% peak FP64 performance) on 619,124 electrons using 8,000 GPU nodes of Frontier supercomputer.