Kristi Källo, Kim Birnie-Gauvin, Henrik Baktoft, Dorte Bekkevold, Charles Lesher, Peter Grønkjær, Gry H. Barfod, Rachel Johnson, George Whitman, Malte Willmes, Justin Glessner, Kim Aarestrup
{"title":"Otolith microchemistry combined with genetics reveal patterns of straying and population connectivity in anadromous brown trout (Salmo trutta)","authors":"Kristi Källo, Kim Birnie-Gauvin, Henrik Baktoft, Dorte Bekkevold, Charles Lesher, Peter Grønkjær, Gry H. Barfod, Rachel Johnson, George Whitman, Malte Willmes, Justin Glessner, Kim Aarestrup","doi":"10.1111/eff.12760","DOIUrl":null,"url":null,"abstract":"<p>Salmonids are well known for their natal homing behaviour, meaning they return to breed in the same area where they originated. However, not all individuals return to their natal breeding grounds—a behavioural trait known as straying. The prevalence of straying is difficult to explore and therefore quantitative estimates for straying are seldom reported. In this study, otolith microchemistry and genetics were combined to investigate patterns of straying over ecological and evolutionary time, respectively, between neighbouring rivers flowing into Mariager fjord, Denmark. Otolith microchemistry was used to determine the river of origin for sea trout (<i>Salmo trutta</i>) upon their return to freshwater and 288 SNP markers were used to determine genetic structure among the rivers in the fjord. In this system, where the distance between rivers is short, otolith microchemistry achieved 80% accuracy in assigning juvenile brown trout to their natal river, thus allowing us to determine that approximately 43% of the adult sea trout had returned to non-natal rivers to spawn, with a similar proportion of strayers and natal homers in all of the rivers. Genetic analysis further supported that there was substantial gene flow among individuals originating from different rivers, indicating that sea trout in Mariager fjord make up one population. The findings obtained from otolith microchemistry and genetics complement each other and provide further evidence that sea trout in this system migrate to non-natal rivers and spawn there, which consequently affects the genetic structure of the population.</p>","PeriodicalId":11422,"journal":{"name":"Ecology of Freshwater Fish","volume":"33 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eff.12760","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology of Freshwater Fish","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eff.12760","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Salmonids are well known for their natal homing behaviour, meaning they return to breed in the same area where they originated. However, not all individuals return to their natal breeding grounds—a behavioural trait known as straying. The prevalence of straying is difficult to explore and therefore quantitative estimates for straying are seldom reported. In this study, otolith microchemistry and genetics were combined to investigate patterns of straying over ecological and evolutionary time, respectively, between neighbouring rivers flowing into Mariager fjord, Denmark. Otolith microchemistry was used to determine the river of origin for sea trout (Salmo trutta) upon their return to freshwater and 288 SNP markers were used to determine genetic structure among the rivers in the fjord. In this system, where the distance between rivers is short, otolith microchemistry achieved 80% accuracy in assigning juvenile brown trout to their natal river, thus allowing us to determine that approximately 43% of the adult sea trout had returned to non-natal rivers to spawn, with a similar proportion of strayers and natal homers in all of the rivers. Genetic analysis further supported that there was substantial gene flow among individuals originating from different rivers, indicating that sea trout in Mariager fjord make up one population. The findings obtained from otolith microchemistry and genetics complement each other and provide further evidence that sea trout in this system migrate to non-natal rivers and spawn there, which consequently affects the genetic structure of the population.
期刊介绍:
Ecology of Freshwater Fish publishes original contributions on all aspects of fish ecology in freshwater environments, including lakes, reservoirs, rivers, and streams. Manuscripts involving ecologically-oriented studies of behavior, conservation, development, genetics, life history, physiology, and host-parasite interactions are welcomed. Studies involving population ecology and community ecology are also of interest, as are evolutionary approaches including studies of population biology, evolutionary ecology, behavioral ecology, and historical ecology. Papers addressing the life stages of anadromous and catadromous species in estuaries and inshore coastal zones are considered if they contribute to the general understanding of freshwater fish ecology. Theoretical and modeling studies are suitable if they generate testable hypotheses, as are those with implications for fisheries. Manuscripts presenting analyses of published data are considered if they produce novel conclusions or syntheses. The journal publishes articles, fresh perspectives, and reviews and, occasionally, the proceedings of conferences and symposia.