On modelling the cutting forces and impact resistance of honed milling tools

IF 0.8 4区 工程技术 Q4 ENGINEERING, MECHANICAL
C. Hopkins, Tim Clarke, Nam Nguyen, N. Z. Yussefian, Ali Hosseini
{"title":"On modelling the cutting forces and impact resistance of honed milling tools","authors":"C. Hopkins, Tim Clarke, Nam Nguyen, N. Z. Yussefian, Ali Hosseini","doi":"10.1139/tcsme-2023-0066","DOIUrl":null,"url":null,"abstract":"In milling operations, cutting tools are subjected to cyclic thermal and mechanical loads due to their intermittent engagement with the workpiece. As a result, they commonly fail due to edge chipping and thermal cracking, among which the former is directly related to the impact at the entry or exit, respectively, in downmilling or upmilling where the chip thickness is maximum. Among the many design factors that affect the impact resistance of milling tools, cutting-edge radius is one of the most important; however, it is often omitted in classic force models. In this paper, a force model that accounts for the edge radius was developed to predict the milling forces. Five sets of milling inserts with custom-made edge radii ranging from 25 to 45 µm were produced and tested. Test results were used to validate the force model and capture the effects of edge radius on the impact resistance of the prepared inserts. Results showed that increasing the edge radius initially improved the impact resistance and increased the tool life. However, increasing the edge radius beyond a certain threshold was proven to be detrimental since it made the tool blunt and drastically increased the cutting forces.","PeriodicalId":23285,"journal":{"name":"Transactions of The Canadian Society for Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Canadian Society for Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1139/tcsme-2023-0066","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In milling operations, cutting tools are subjected to cyclic thermal and mechanical loads due to their intermittent engagement with the workpiece. As a result, they commonly fail due to edge chipping and thermal cracking, among which the former is directly related to the impact at the entry or exit, respectively, in downmilling or upmilling where the chip thickness is maximum. Among the many design factors that affect the impact resistance of milling tools, cutting-edge radius is one of the most important; however, it is often omitted in classic force models. In this paper, a force model that accounts for the edge radius was developed to predict the milling forces. Five sets of milling inserts with custom-made edge radii ranging from 25 to 45 µm were produced and tested. Test results were used to validate the force model and capture the effects of edge radius on the impact resistance of the prepared inserts. Results showed that increasing the edge radius initially improved the impact resistance and increased the tool life. However, increasing the edge radius beyond a certain threshold was proven to be detrimental since it made the tool blunt and drastically increased the cutting forces.
珩磨铣刀的切削力和抗冲击性建模
在铣削操作中,切削工具由于与工件间歇性啮合而承受循环热负荷和机械负荷。因此,切削工具通常会因刃口崩裂和热裂纹而失效,其中前者与切屑厚度最大的下铣或上铣时入口或出口处的冲击直接相关。在影响铣削工具抗冲击性的众多设计因素中,切削刃半径是最重要的因素之一,但在经典的力模型中却经常被忽略。本文建立了一个考虑刃口半径的力模型来预测铣削力。我们制作并测试了五套铣削刀片,其边缘半径从 25 微米到 45 微米不等。测试结果用于验证力模型和捕捉边缘半径对制备刀片抗冲击性的影响。结果表明,增加刀刃半径最初会提高抗冲击性并延长刀具寿命。然而,超过一定临界值后,边缘半径的增加被证明是有害的,因为它会使刀具变钝,并急剧增加切削力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
53
审稿时长
5 months
期刊介绍: Published since 1972, Transactions of the Canadian Society for Mechanical Engineering is a quarterly journal that publishes comprehensive research articles and notes in the broad field of mechanical engineering. New advances in energy systems, biomechanics, engineering analysis and design, environmental engineering, materials technology, advanced manufacturing, mechatronics, MEMS, nanotechnology, thermo-fluids engineering, and transportation systems are featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信