Von Neumann local matrices

Q4 Mathematics
Iulia-Elena Chiru, S. Crivei
{"title":"Von Neumann local matrices","authors":"Iulia-Elena Chiru, S. Crivei","doi":"10.24193/mathcluj.2023.2.08","DOIUrl":null,"url":null,"abstract":"We use our recent results on von Neumann regular matrices, strongly regular matrices and matrices having a non-zero outer inverse to derive applications to some generalizations of these concepts, called von Neumann local, strongly von Neumann local and outer von Neumann local matrices. Among other properties, we show that the $t^{\\rm th}$ compound matrix of every matrix of determinantal rank $t$ over a commutative local ring is strongly von Neumann local, and every matrix over an arbitrary semiperfect ring is outer von Neumann local.","PeriodicalId":39356,"journal":{"name":"Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/mathcluj.2023.2.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We use our recent results on von Neumann regular matrices, strongly regular matrices and matrices having a non-zero outer inverse to derive applications to some generalizations of these concepts, called von Neumann local, strongly von Neumann local and outer von Neumann local matrices. Among other properties, we show that the $t^{\rm th}$ compound matrix of every matrix of determinantal rank $t$ over a commutative local ring is strongly von Neumann local, and every matrix over an arbitrary semiperfect ring is outer von Neumann local.
冯-诺伊曼局部矩阵
我们利用最近关于冯-诺依曼正则矩阵、强正则矩阵和具有非零外逆的矩阵的结果,推导出这些概念的一些广义应用,即冯-诺依曼局部矩阵、强冯-诺依曼局部矩阵和外冯-诺依曼局部矩阵。除其他性质外,我们还证明了在交换局部环上行列式秩为 $t$ 的每个矩阵的 $t^{\rm th}$ 复合矩阵都是强冯-诺依曼局部矩阵,而在任意半完全环上的每个矩阵都是外冯-诺依曼局部矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematica
Mathematica Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信