{"title":"On Properties of Graded Rings with respect to Group Homomorphisms","authors":"A. Alshehry, R. Abu-Dawwas, Muhsen Al-Bashayreh","doi":"10.1155/2023/3803873","DOIUrl":null,"url":null,"abstract":"<jats:p>Let <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <mi>G</mi> </math> </jats:inline-formula> be a group and <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"> <mi>R</mi> </math> </jats:inline-formula> be a <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"> <mi>G</mi> </math> </jats:inline-formula>-graded ring with non-zero unity. The goal of our article is reconsidering some well-known concepts on graded rings using a group homomorphism <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\"> <mi>α</mi> <mo>:</mo> <mi>G</mi> <mo>⟶</mo> <mi>G</mi> </math> </jats:inline-formula>. Next is to examine the new concepts compared to the known concepts. For example, it is known that <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\"> <mfenced open=\"(\" close=\")\" separators=\"|\"> <mrow> <mi>R</mi> <mo>,</mo> <mi>G</mi> </mrow> </mfenced> </math> </jats:inline-formula> is weak if whenever <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\"> <mi>g</mi> <mo>∈</mo> <mi>G</mi> </math> </jats:inline-formula> such that <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\"> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>g</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </math> </jats:inline-formula>, then <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\"> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <msup> <mrow> <mi>g</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </msub> <mo>=</mo> <mn>0</mn> </math> </jats:inline-formula>. In this article, we also introduce the concept of <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\"> <mi>α</mi> </math> </jats:inline-formula>-weakly graded rings, where <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\"> <mfenced open=\"(\" close=\")\" separators=\"|\"> <mrow> <mi>R</mi> <mo>,</mo> <mi>G</mi> </mrow> </mfenced> </math> </jats:inline-formula> is said to be <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\"> <mi>α</mi> </math> </jats:inline-formula>-weak whenever <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\"> <mi>g</mi> <mo>∈</mo> <mi>G</mi> </math> </jats:inline-formula> such that <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M13\"> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>g</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </math> </jats:inline-formula>, and <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M14\"> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>α</mi> <mrow> <mfenced open=\"(\" close=\")\" separators=\"|\"> <mrow> <mi>g</mi> </mrow> </mfenced> </mrow> </mrow> </msub> <mo>=</mo> <mn>0</mn> </math> </jats:inline-formula>. Note that if <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M15\"> <mi>G</mi> </math> </jats:inline-formula> is abelian, then the concepts of weakly and <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M16\"> <mi>α</mi> </math> </jats:inline-formula>-weakly graded rings coincide with respect to the group homomorphism <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M17\"> <mi>α</mi> <mfenced open=\"(\" close=\")\" separators=\"|\"> <mrow> <mi>g</mi> </mrow> </mfenced> <mo>=</mo> <msup> <mrow> <mi>g</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </math> </jats:inline-formula>. We introduce an example of non-weakly graded ring that is <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M18\"> <mi>α</mi> </math> </jats:inline-formula>-weak for some <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M19\"> <mi>α</mi> </math> </jats:inline-formula>. Similarly, we establish and examine the concepts of <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M20\"> <mi>α</mi> </math> </jats:inline-formula>-non-degenerate, <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M21\"> <mi>α</mi> </math> </jats:inline-formula>-regular, <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M22\"> <mi>α</mi> </math> </jats:inline-formula>-strongly, <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M23\"> <mi>α</mi> </math> </jats:inline-formula>-first strongly graded rings, and <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M24\"> <mi>α</mi> </math> </jats:inline-formula>-weakly crossed product.</jats:p>","PeriodicalId":39893,"journal":{"name":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","volume":"7 6","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3803873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a group and be a -graded ring with non-zero unity. The goal of our article is reconsidering some well-known concepts on graded rings using a group homomorphism . Next is to examine the new concepts compared to the known concepts. For example, it is known that is weak if whenever such that , then . In this article, we also introduce the concept of -weakly graded rings, where is said to be -weak whenever such that , and . Note that if is abelian, then the concepts of weakly and -weakly graded rings coincide with respect to the group homomorphism . We introduce an example of non-weakly graded ring that is -weak for some . Similarly, we establish and examine the concepts of -non-degenerate, -regular, -strongly, -first strongly graded rings, and -weakly crossed product.
期刊介绍:
The International Journal of Mathematics and Mathematical Sciences is a refereed math journal devoted to publication of original research articles, research notes, and review articles, with emphasis on contributions to unsolved problems and open questions in mathematics and mathematical sciences. All areas listed on the cover of Mathematical Reviews, such as pure and applied mathematics, mathematical physics, theoretical mechanics, probability and mathematical statistics, and theoretical biology, are included within the scope of the International Journal of Mathematics and Mathematical Sciences.