New definitions of fractional derivatives and integrals for complex analytic functions

Q1 Mathematics
Mohammad Abu-Ghuwaleh, Rania Saadeh
{"title":"New definitions of fractional derivatives and integrals for complex analytic functions","authors":"Mohammad Abu-Ghuwaleh, Rania Saadeh","doi":"10.1080/25765299.2023.2281064","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we introduce a ground-breaking approach to defining fractional calculus for a selected class of analytic functions. Our new definitions, based on a novel and intuitive understanding of fractional derivatives and integrals, offer improved mathematical tractability for a variety of applications, including physics, engineering and finance. Our approach significantly simplifies the complexity of mathematical functions compared to the traditional Riemann-Liouville approach, by using simple functions rather than special functions, while preserving the intrinsic sense of fractional calculus. This article not only presents our proposed definitions but also provides a thorough analysis of their properties and advantages. The conclusion of this paper discusses the potential for future research in the field of fractional calculus.","PeriodicalId":37239,"journal":{"name":"Arab Journal of Basic and Applied Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25765299.2023.2281064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we introduce a ground-breaking approach to defining fractional calculus for a selected class of analytic functions. Our new definitions, based on a novel and intuitive understanding of fractional derivatives and integrals, offer improved mathematical tractability for a variety of applications, including physics, engineering and finance. Our approach significantly simplifies the complexity of mathematical functions compared to the traditional Riemann-Liouville approach, by using simple functions rather than special functions, while preserving the intrinsic sense of fractional calculus. This article not only presents our proposed definitions but also provides a thorough analysis of their properties and advantages. The conclusion of this paper discusses the potential for future research in the field of fractional calculus.
复分析函数的分数导数和积分的新定义
摘要 在本文中,我们介绍了一种开创性的方法,即为选定的一类解析函数定义分数微积分。我们的新定义基于对分数导数和积分新颖直观的理解,为物理学、工程学和金融学等各种应用提供了更好的数学可操作性。与传统的黎曼-刘维尔方法相比,我们的方法通过使用简单函数而非特殊函数,大大简化了数学函数的复杂性,同时保留了分数微积分的内在意义。本文不仅介绍了我们提出的定义,还对其特性和优势进行了深入分析。本文的结论讨论了未来在分数微积分领域的研究潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arab Journal of Basic and Applied Sciences
Arab Journal of Basic and Applied Sciences Mathematics-Mathematics (all)
CiteScore
5.80
自引率
0.00%
发文量
31
审稿时长
36 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信