Homogenization of an eigenvalue problem through rough surfaces

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
J. Avila, Sara Monsurrò, F. Raimondi
{"title":"Homogenization of an eigenvalue problem through rough surfaces","authors":"J. Avila, Sara Monsurrò, F. Raimondi","doi":"10.3233/asy-231882","DOIUrl":null,"url":null,"abstract":"In a bounded cylinder with a rough interface we study the asymptotic behaviour of the spectrum and its associated eigenspaces for a stationary heat propagation problem. The main novelty concerns the proof of the uniform a priori estimates for the eigenvalues. In fact, due to the peculiar geometry of the domain, standard techniques do not apply and a suitable new approach is developed.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":"56 2","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231882","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In a bounded cylinder with a rough interface we study the asymptotic behaviour of the spectrum and its associated eigenspaces for a stationary heat propagation problem. The main novelty concerns the proof of the uniform a priori estimates for the eigenvalues. In fact, due to the peculiar geometry of the domain, standard techniques do not apply and a suitable new approach is developed.
通过粗糙表面的特征值问题均质化
在具有粗糙界面的有界圆柱体中,我们研究了静止热传播问题的频谱及其相关特征空间的渐近行为。主要的新颖之处在于证明了特征值的统一先验估计。事实上,由于域的几何形状特殊,标准技术并不适用,因此我们开发了一种合适的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信