Physics-driven cycle network for seismic impedance inversion using conditional generative adversarial networks

IF 1.6 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Yaojun Wang, Jingjing Zong, Liangji Wang, Bangli Zou, Ziteng Chen, Yang Luo
{"title":"Physics-driven cycle network for seismic impedance inversion using conditional generative adversarial networks","authors":"Yaojun Wang, Jingjing Zong, Liangji Wang, Bangli Zou, Ziteng Chen, Yang Luo","doi":"10.1093/jge/gxad093","DOIUrl":null,"url":null,"abstract":"Despite the extensive application of artificial neural networks in seismic inversion, their effectiveness is often hampered by the limited availability of labeled data. To address this challenge, we introduce a novel method for seismic impedance inversion. Our approach integrates a physics-driven cycle network with a Conditional Generative Adversarial Network (CGAN) and a convolutional model. Employing seismic data as input, the CGAN capitalizes on inherent information to minimize non-uniqueness during inversion. Furthermore, the convolutional model, acting as a physics-informed operator, reverts the derived impedance data back to seismic form, enabling simultaneous training of neural networks with labeled and unlabeled data, fulfilling the seismic-to-seismic cycle. The proposed method is demonstrated to be effective on tests using both theoretical models and field data.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":"52 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxad093","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the extensive application of artificial neural networks in seismic inversion, their effectiveness is often hampered by the limited availability of labeled data. To address this challenge, we introduce a novel method for seismic impedance inversion. Our approach integrates a physics-driven cycle network with a Conditional Generative Adversarial Network (CGAN) and a convolutional model. Employing seismic data as input, the CGAN capitalizes on inherent information to minimize non-uniqueness during inversion. Furthermore, the convolutional model, acting as a physics-informed operator, reverts the derived impedance data back to seismic form, enabling simultaneous training of neural networks with labeled and unlabeled data, fulfilling the seismic-to-seismic cycle. The proposed method is demonstrated to be effective on tests using both theoretical models and field data.
利用条件生成对抗网络进行地震阻抗反演的物理驱动循环网络
尽管人工神经网络在地震反演中得到了广泛应用,但由于标注数据有限,其有效性往往受到影响。为了应对这一挑战,我们引入了一种新的地震阻抗反演方法。我们的方法将物理驱动循环网络与条件生成对抗网络(CGAN)和卷积模型整合在一起。利用地震数据作为输入,条件生成对抗网络利用固有信息,在反演过程中最大限度地减少非唯一性。此外,卷积模型作为物理信息算子,可将推导出的阻抗数据还原为地震形式,从而利用标注和非标注数据同时训练神经网络,实现地震到地震的循环。在使用理论模型和现场数据的测试中,证明了所提出的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysics and Engineering
Journal of Geophysics and Engineering 工程技术-地球化学与地球物理
CiteScore
2.50
自引率
21.40%
发文量
87
审稿时长
4 months
期刊介绍: Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信